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Estimating Mercury’s 88-day libration amplitude from orbit
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Abstract

In this paper it is derived that the libration of Mercury can be described by � = �0 sinM + �0=K sin 2M where �0 is the unknown
libration amplitude, M is Mercury’s mean anomaly and K = −9:483. �0 can be determined by comparing pairs of images of the same
landmarks taken by an orbiter at di6erent positions of Mercury. If the angle between the orbit plane of a polar orbiter and Mercury’s line
of periapsis is between −60◦ and 60◦ and if one landmark at the equator is imaged per day with a relative precision of 1:6 arcsec, then
the libration amplitude can be determined in two Mercury years (176 days) with an accuracy of 1 arcsec or better, which is su9cient to
answer the question whether Mercury has a solid or :uid core.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The discovery of an intrinsic magnetic ?eld for Mercury
by the Mariner 10 :ybys in 1974 and 1975 (Ness et al.,
1974) can be best explained by a hydromagnetic dynamo in
a :uid outer core. Peale (1988) has proposed that the radius
of the expected :uid core can be determined by measuring
the amplitude of the 88-day forced libration in longitude,
the obliquity (inclination of the equator to Mercury’s orbital
plane) and second-degree gravity potential coe9cients. Let
A, B and C be the principal moments of inertia of Mercury,
Cm the mantle’s moment of inertia,MM the mass ofMercury,
ae its equatorial radius, then

Cm
C
=

(
Cm

B − A

) (
B − A
MMa2e

) (
MMa2e
C

)
: (1)

A value ofCm=C of 1 would indicate a core ?rmly coupled to
the mantle andmost likely solid. If the entire core or the outer
part is :uid, Cm=C � 0:5 for the large core size (rc � 0:75)
as modelled by Cassen et al. (1976).
The third factor in Eq. (1) can be derived from the

obliquity, C20 and C22 (see Peale, 1988), the second factor
is equal to 4C22 and the ?rst factor is approximately the
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inverse of the libration amplitude

0 =
B − A
Cm

: (2)

We assume that the gravitational harmonics and the
obliquity will be determined by the BepiColombo mission
(Novara, 2002) to a few percent or better accuracy, so
the uncertainty in the determined value of Cm=C will be
dominated by the uncertainty in the libration amplitude.
BepiColombo’s objective is to determine both, obliquity
and libration amplitude, but in this paper it is only assessed
how accurate the libration amplitude can be determined
with a camera on board a spacecraft in a 400 × 1500 km
polar orbit.

2. Mercury’s 88-day libration

Before observing the libration of Mercury, the princi-
pal dynamics have to be understood. The di6erential equa-
tion which governs the libration is taken from Balogh and
Giampieri (2002). The Sun exerts a torque along Mercury’s
spin axis, with magnitude

T =−3GM�
2r3p

(B − A) sin2 ; (3)

where M� is the mass of the Sun, rp the Sun–Mercury
distance, and  the angle between Mercury’s equatorial long
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Fig. 1. The geometry of the torque. Mercury’s long axis makes an angle
� with the inertial reference axis, and an angle  with the direction to the
Sun. f = � −  is the true anomaly of Mercury (Balogh and Giampieri,
2002).
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Fig. 2. Libration angle � as function of time calculated by numerical
integration of Eq. (6). For � ≡ 3

2 (B−A)=Cm we take 3×10−4 (consistent
with Peale’s papers) and the initial conditions are chosen arbitrarily: �0=0
and �̇0 = 1:6 arcsec/day.

axis and the direction of the Sun (see Fig. 1). From Fig. 1,
the rotation angle in inertial space is �=f+  , where f is
Mercury’s true anomaly.
Assuming that the core does not follow the libration of

the mantle, this torque T induced by the Sun gives the rate
of change of the mantle’s spin angular momentum L

dL
dt
= Cm J�= T: (4)

Since Mercury’s spin is in a 3:2 resonance with the orbital
frequency, we introduce the libration angle as

� ≡ � − 3
2
M =  + f − 3

2
M; (5)

where M is Mercury’s mean anomaly. From Eq. (3) to (5)
it is a cinch to obtain

J�=−3GM�
2r3p

(
B − A
Cm

)
sin(2�+ 3M − 2f): (6)

The derivation of Eq. (6) can also be found in Murray and
Dermott (1999) and Celletti (1990). A more general set of
di6erential equations including the coupling with the (dif-
ferent) libration of the core is given by Peale et al. (2002).
We neglect the coupling with the core libration and nu-

merically integrate Eq. (6). The results are seen in Fig. 2.

Table 1
Analytical expansion and numerically computed values (e = 0:2056) for
the eccentricity functions G20q. For G203 no analytical expansion was
found in the literature.

q G20q Value for e = 0:2056

−1 −e=2 + e3=16 + · · · −0.1023
0 1− 5e2=2 + 13e4=16 + · · · 0.8957
1 7e=2− 123e3=16 + · · · 0.6542
2 17e2=2− 115e4=6 + · · · 0.3261
3 0.1380

There are two major components of Mercury’s libration: a
long-term libration with a period of some years (depending
on � ≡ 3

2 (B − A)=Cm) and a short-term libration with a
period of 88 days, i.e. one Mercury year.
Balogh and Giampieri replaced in Eq. (6) the following

relation between the distance from Mercury to the Sun rp,
the semimajor axis a and the so-called eccentricity functions
G20q (see Kaula, 1966)(

a
rp

)3
sin(2�+ 3M − 2f)

=
∑
q

G20q(e) sin[2�+ (1− q)M ] (7)

and obtained (after substituting the derivatives with respect
to time by derivatives with respect to M):

�′′ + �
∑
q

G20q(e)sin[2�+ (1− q)M ] = 0: (8)

Averaging Eq. (8) over one orbital period, Balogh and
Giampieri determined the period of the long-term libration
to be about (2�G201)−1=2 revolutions. For our � of 3× 10−4
and G201 as given in Table 1 this long-term period is 50.5
revolutions, i.e. 12 years. Due to the ?nite tidal dissipation
function Q this libration should have damped out and no
observable amplitude should have remained, but “we have
been surprised in the past” as Peale et al. (2002) warns. Nev-
ertheless we assume in this paper that there is no long-term
libration left.
What remains to be determined is the amplitude �0 of

the 88-day libration, which gives the clue to the internal
structure of Mercury. Integrating Eq. (8) for small values of
� we get

�0 = �(G200 − G202): (9)

If � = 3 × 10−4 (a value close to the one used by
Peale (1988)), then �0 � 35 arcsec. There are also
higher-frequency terms which need to be included to de-
scribe Mercury’s libration more precisely, as can be seen
in Fig. 3. We con?ne ourselves to the following approxi-
mation:

�= �0 sinM + �1 sin 2M: (10)
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Fig. 3. Mercury’s libration � can accurately be described by two sine
terms: �0 sinM + �1 sin 2M (the solid line and dashed line can hardly
be discerned). If only a single sine function is used as approximation the
best ?t (i.e. minimum least squares) has a 2% smaller amplitude and the
maximum/minimum libration angles appear 11◦ before/after the correct
maximum/minimum which are at 101◦=259◦ mean anomaly (123◦=237◦
true anomaly). Note that these values are independent of the initial
conditions for � and �̇.

�1 can be obtained if we include G20q(e) up to order q=3
in Eq. (8) and integrate

�1 =
�
4
(G201 − G203) (11)

which gives �1 � −3:7 arcsec. Note that the relation be-
tween the two amplitudes K=�0=�1 =−9:483 does not de-
pend on �. The approximation with two terms nicely matches
the numerical solution (see Fig. 3).

3. Observation geometry from orbit

To get a feeling for the observability of the libration
of Mercury, this relation helps: a libration amplitude of
10 arcsec causes a landmark at the equator of Mercury
(r=2440 km) to drift regularly to the East and to the West
up to 118 m with respect to its ‘nominal’ position (where
nominal refers to a Mercury with a constant spin rate). If
�= 3× 10−4, �0 is 35 arcsec and all landmarks will show
a libration of plus/minus 400 m at the equator.
The basic idea how to observe the libration is to take im-

ages of the same landmarks at di6erent true anomalies of
Mercury. Two pictures of the same landmark are overlaid
and, with pattern matching techniques, the displacement of
the surface of one image with respect to the other image is
determined. Jorda and Thomas (2000) simulated the pattern
matching of albedo features and craters for a Mercury or-
biter and concluded that sub-pixel accuracy can be achieved,
if images obtained at phase angles¡ 5◦ and¿ 55◦ are ex-
cluded (for albedo spots) and if the di6erence between the
phase angles are smaller than 35◦ (for craters).
An important factor which determines the observability

of Mercury’s surface is the right ascension of ascending

✹

Periherm

Mercury at
perihelion

β

Fig. 4. De?nition of the angle � between the target orbital plane (which
is polar and plotted here as a thick line) and Mercury’s line of periapsis.

node of the target orbit. BepiColombo is in a polar orbit
and thus, due to Mercury’s very small obliquity, its orbital
plane is perpendicular to Mercury’s orbital plane. Therefore,
it is convenient to de?ne the angle � as the angle between
the target orbital plane and Mercury’s line of periapsis. � is
illustrated in Fig. 4.
BepiColombo’s orbit has a periherm altitude of 400 km

and an apoherm altitude of 1500 km. The argument of per-
iherm is about 180◦ (or 0◦), i.e. periherm and apoherm are
close to the equator. Since the libration can be best observed
at the equator, landmark images should be taken there. The
resolution of the images is inversely proportional to the al-
titude and thus it is at least three times lower when taken at
apoherm. Thus, it is evident that images taken around peri-
herm will provide a better accuracy of the displacement of
surface features. If � is 0◦, then low-altitude images can be
taken during a long time around aphelion. On the contrary
if � is 180◦, the part of Mercury’s surface which can be im-
aged from low altitude is much smaller, because Mercury
spends less time around perihelion. Fig. 5 shows the sur-
face coverage during two aphelion passages of Mercury for
� = 0◦.
Fig. 5 reveals that � = 0◦ provides benign conditions to

observe the same longitude intervals at two di6erent true
anomalies of Mercury. If we pick the longitude of 0◦, we
have the ?rst images taken on day 75 (true anomaly=222◦,
mean anomaly = 240◦) with a phase angle of 41◦ (sun
elevation of 49◦ corresponding to “09:16 local time”). A
second image is taken on day 133 (true anomaly = 138◦,
mean anomaly = 120◦) with a phase angle of 43◦ (corre-
sponding to “14:52 local time”).
In our subsequent analysis we assume that landmarks are

omnipresent, images are taken only at the equator when the
spacecraft altitude is below 1000 km and images taken with
a phase angle larger than 60◦ are rejected. With these as-
sumptions the longitude intervals from 152◦ to 211◦ and
from −30◦ to 28◦ can be covered twice if � = 0◦. Fig. 6
shows the corresponding mean anomalies where these longi-
tude strips are imaged. The ?rst images are taken at a mean
anomaly around 240◦, shortly before the libration is at its
minimum and the second images of the same longitude band
is taken at a mean anomaly around 120◦, shortly after the
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Fig. 5. BepiColombo’s coverage of Mercury’s surface during two con-
secutive aphelion passages (from Mercury true anomaly 90◦ to −90◦)
for �= 0◦. The solid lines show the altitude of the observations and the
dashed lines the sun elevation at the sub-satellite point (i.e. 90◦ minus
phase angle). The surface is scanned from East to West. The secondary
x-axis on top of the plots represents the time of the observations mea-
sured in days (day 0 corresponds to the time when the spacecraft :ies
over the terminator, at a Mercury true anomaly of −90◦. The plot on top
covers the period from day 32 to day 88, the plot below from day 120
to day 176).
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Fig. 6. Positions (mean anomalies) along Mercury’s orbit where Bepi-
Colombo can observe equatorial surface features from low altitude twice
during two consecutive Mercury orbits superimposed on the libration
angle (which shall be measured) as function of the orientation of the
spacecraft’s orbital plane (�).

libration is at its maximum. This is a nearly optimum situa-
tion. Also for �=−32◦ (the value which is obtained if the
interplanetary trajectory is fuel-optimized, see Katzkowski

et al. (2002)) and for � = 45◦ the positions in the orbit of
Mercury where the images can be taken are located such that
the libration can be observed. For �=90◦, however, there is
not a single opportunity to image the same longitude twice
if the constraints on the phase angles have to be ful?lled.

4. Achievable accuracy as function of �

In this section a straightforward covariance analysis of
the error in the libration amplitude will be presented. We
have a linear system of observations

Z = A 0 + �; (12)

where Z is the vector with the observed displacements of
surface features, 0 is the amplitude to be estimated and �
is the error in the observations. The components ai of the
vector A are

ai = sinM1i − sinM2i + 1K (sin 2M1i − sin 2M2i); (13)

whereM1i is Mercury’s mean anomaly where the landmark i
is imaged the ?rst time and M2i is Mercury’s mean anomaly
where it is imaged the second time.
The least-squares estimate of the libration amplitude is

̂0 = 0 +
AT�
ATA

: (14)

We assume that the components �i of the measurement
error vector are independent from each other and Gaussian
white noise with the same standard deviation ! because it
turned out that all observations are taken at very similar
altitudes below 500 km. At this altitude 1 pixel uncertainty
in the pattern matching corresponds to 12:5 m on the surface.
On top of this uncertainty there are three other error sources
(Milani et al., 2001):

• The error in the knowledge of the position of the space-
craft in a mercurycentric nonrotating frame is estimated
to be ¡ 10 m (RMS value).

• The error in the knowledge of the pointing of the star
mapper with respect to an absolute reference frame is
better than 2 arcsec corresponding to 5 m on the surface
from an altitude of 500 km.

• The error in the angles de?ning the pointing of the camera
with respect to the pointing of the star mapper is 3 arcsec
corresponding to 7:5 m on the surface.

Since the four errors are all independent from each other,
the total RMS error is

! =
√
12:52 + 102 + 52 + 7:52 = 18:4 m; (15)

which corresponds to an error in longitude of 1:6 arcsec at
the equator of Mercury.
Using the relation

Var(a1�1 + a2�2) = (a21 + a22)!
2;
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Fig. 7. Total number of pairs of landmark images which can be obtained in
2 Mercury years ful?lling the constraints on the altitude (below 1000 km)
and the phase angle (¡ 60◦) as function of the �-angle. Note, the two
images which are compared are always taken at a very similar altitude
and the di6erences in their phase angles are always smaller than 35◦ (see
Fig. 5).
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Fig. 8. Standard deviation of the estimate of the libration amplitude ̂0
as a function of �.

the standard deviation of the estimate of the libration am-
plitude ̂0 can be derived from Eq. (14). The result is

! = (ATA)−1=2!: (16)

The same result was also obtained by Bierman (1977,
p. 16) in a more general case.
Now we assume that we observe one landmark per day

and determine ATA as a function of � for a total mission
duration of 176 days (2 Mercury years). Fig. 7 shows the
number of pairs of images acquired during this period for
di6erent values of �. As mentioned before, for �=90◦ there
are no pairs of images satisfying the constraints.
Fig. 8 shows the uncertainty in the estimation of the libra-

tion amplitude as a function of �. In general, the uncertainty
increases as the number of images decreases. However, also
Mercury’s mean anomaly where the images are taken plays
a role. For instance, for � � 73◦ the libration angles in the
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Fig. 9. Positions (mean anomalies) along Mercury’s orbit where the same
landmarks can be imaged twice for � = 73◦. The libration angle � is
about the same for two corresponding images and thus it is di9cult to
determine the libration amplitude.

pairs of images are nearly identical and do not allow the es-
timation of the libration amplitude, as can be seen in Fig. 9.

5. Discussion

For � around 0◦ the calculations above give an error in
the amplitude determination which is below 1%. This is
much better than what Wu et al. (1997) and also Smith et al.
(2001) found. The analysis by Wu et al. (1997) like the one
presented here is based on comparing images taken from the
BepiColombo orbit, but they assume larger measurement
errors in their simulations (e.g. 15 arcsec for the attitude
uncertainty of the optical axis) and assume images taken at
30◦ latitude (rather than at the equator). This results in a total
uncertainty of 3:8 arcsec in the libration angle compared to
the 1:6 arcsec which we assume. Wu et al. (1997) did not
perform a full simulation including the number of possible
observations and thus, the 3:8 arcsec are considered also as
the overall achievable accuracy in the libration amplitude. In
our approach the uncertainty tends to zero when the number
of observations tend to in?nity because we have no biases
and system noise in our equations.
Smith et al. (2001) simulate the estimation of the libration

amplitude by remote sensing of the gravity ?eld and altime-
try from the MESSENGER orbit (200×15 200 km). Based
on their assumptions the overall achievable accuracy in the
libration amplitude is 25 m at the equator corresponding to
2:1 arcsec. However, the MESSENGER orbit is inferior to
the BepiColombo orbit if the objective is to determine the
gravity ?eld and the rotation state of Mercury.
A complete numerical analysis is necessary to assess the

accuracy in the libration amplitude which can be achieved
with the BepiColombo mission. The analysis presented here
neglects systematic noise and therefore gives too optimistic
results although the total mission duration will be 4 Mer-
cury years instead of 2 years and probably more than one
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useful image per day will be collected. The covariance anal-
ysis performed by SVanchez Ortiz et al. (2003) includes sys-
tematic noise. It shows that 0:3 arcsec accuracy can only be
achieved if the camera has a nadir o6set pointing capability
of 1◦ and if the number of observable landmarks is large
(about 700 over the surface of Mercury). When there are
10 times fewer landmarks, the achievable accuracy will be
worse than 1 arcsec.

6. Conclusions

On top of Mercury’s continuous rotation which is in a 3:2
resonance with Mercury’s orbital period, there is a libration
motion which can be roughly described by a single sine
function. However, for more precise analysis like the one
performed in this paper, higher order termsmust be included.
It was shown that the libration can be well approximated by
�0 sinM +�0=K sin 2M where �0 is the unknown libration
amplitude and K =−9:483 which is independent of �0.

�0, the amplitude of Mercury’s libration, can be deter-
mined with high accuracy if the angle between the orbit
plane of a polar orbiter and Mercury’s line of periapsis
(�-angle) is between −60◦ and 60◦. For �=0◦ an accuracy
of below 0.3 arcsec can be achieved if pattern matching tech-
niques are applied to 20 independent pairs of surface images
which will be available in 2 Mercury years (176 days).
However, no systematic noise was considered. A full nu-

merical analysis was carried out by SVanchez Ortiz et al.
(2003) simulating at the same time the orbit determination
process and the determination of the libration amplitude.
Their results con?rm that—if the �-angle is chosen properly
and if the camera has a 1◦ pointing capability—the libra-
tion amplitude can be determined with an accuracy which
is su9cient to answer the question whether Mercury has a
:uid or solid core.

The authors want to thank AndrVe Balogh for his valuable
contribution and for providing Fig. 1. They also express
their thanks to Klaus Merz for computing the eccentricity
functions in Table 1 and to two referees (one of them Andrea
Milani) for their helpful comments.
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