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1. INTRODUCTION

Europa, one of the moons of Jupiter, is among the most interest-
ing targets in the solar system for exobiology. The presence of
water, probably liquid under a superficial layer of ice, suggests
the possibility of prebiotic life. A mission aimed at the explora-
tion of this peculiar moon would be extremely interesting but,
at the same time, quite challenging due to the distance from
both the Earth and Sun. Such a mission would be extremely
demanding in terms of communications, power and ∆v. All the
missions to Jupiter, or more generally to the outer part of the
solar system, such as Galileo [1] or Cassini [2], have employed
chemical propulsion as the main propulsion system and radio-
isotope thermal generators (RTGs) to generate the required
power on-board. An alternative would be to use solar electric
propulsion or a combination of electric and chemical propul-
sion.

Recent studies have explored the possibility of missions to
the icy moons of Jupiter based on nuclear electric propulsion.
Parcher et al. [3, 4] proposed a number of transfer trajectories
to Jupiter optimising both time of flight and propellant mass.
Sims presented an analysis of a potential mission to the icy
moons, with some results on the optimal design of a transfer to
Jupiter and of a tour of the Jovian moons [5]. All these studies
were addressing the design of the Jupiter Icy Moons Orbiter
(JIMO). The main target was Europa due to the aforemen-
tioned-suspected ocean where simple alien life is a possibility
in our solar system. Ganymede and Callisto, which are now
thought to have liquid, salty oceans beneath their icy surfaces,
were included in the targets of the JIMO mission. The space-
craft was planned to be propelled by eight ion engines and
powered by a small fission reactor.

In this paper, we investigate the design of a solar electric
propulsion (SEP) mission to Jupiter’s moons. The require-
ments in terms of ∆v are reduced by using multiple Gravity
Assist (GA) manoeuvres at Venus, Earth, Mars, and the Jovian
moons. The inner planets and the Jovian moons are modelled as
simple point masses with no gravity field, while Jupiter is
modelled as a full gravitational body. The main goal of this
study is to assess the actual feasibility of a mission to Europa
using solar electric propulsion as main source of thrust, and to
investigate the related issues.

The design of a transfer trajectory combining SEP and GA
can be regarded as a general trajectory optimisation problem.
The dynamics of the spacecraft is mainly governed by the
gravitational attraction of the Sun when the spacecraft is out-
side the sphere of influence of a planet, and by the gravitational
attraction of the planet during a gravity assist manoeuvre. Low-
thrust propulsion is used to shape the trajectory arcs between
two subsequent encounters and to obtain the best incoming
conditions for a swing-by. In this work, the trajectory was split
into several phases, with each phase corresponding to a trajec-
tory arc connecting two celestial bodies. For each phase, a
Finite Elements in Time technique [6, 7] was used to transcribe
the differential equations governing the dynamics of the space-
craft into a set of algebraic nonlinear equations. Direct Finite
Elements Transcription (DFET) has already been proven to be
an effective direct method for the design of very complex
trajectories with multiple gravity assist manoeuvres and low-
thrust arcs, including the optimisation of system parameters
and a full n-body dynamics for gravity assist manoeuvres [6, 7].

Prior to the optimisation of the low-thrust trajectory, three
algorithms, implementing three reduced trajectory models of
increasing complexity, were used to generate first guess solu-
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tions for both the transfer from the Earth to the Jupiter, and for
the tour of the moons. Of the three algorithms, two were used to
explore the search space for all possible solutions for a transfer
to Jupiter, and one was used to design the tour of Jupiter’s
moons. In particular, they were used to automatically find a set
of potentially optimal swing-by sequences (i.e. the number of
gravity assist manoeuvres and the celestial body of each ma-
noeuvre). Unlike other approaches, which implement a reduced
model for low-thrust trajectories [8, 9], here we use a reduced
model for a multi-impulse trajectory to generate a first guess
for a low-thrust trajectory.

The two algorithms for the design of the transfer to Jupiter
implement a trajectory model conceptually similar to S-TOUR
[10, 11, 12], and a systematic search. The design is a two-step
process; the first step identifies the sequence and a possible
interval of launch dates, and the second computes an accurate
multi-impulsive trajectory. The first step makes use of a very
simple model, which allows for the computation of a very large
number of potential solutions in a matter of seconds. The third
algorithm was devised to generate potentially optimal sequences
of swing-bys of Jupiter’s moon. The algorithm provides results
that are consistent with the work of Heaton et al. [13] with a
very low computational effort.

The paper is structured as follows: after a description of the
dynamic models, the three algorithms for the generation of first
guesses are presented in detail. A description of the DFET
method then follows. Finally, prior to the results section, we
present an analysis of the capture manoeuvre at Jupiter using a
gravity assist manoeuvre of one of the moons.

2. TRAJECTORY MODEL

The whole transfer to Europa was decomposed into two
main parts: an interplanetary cruise from the Earth to Jupiter
and a capture in the Jovian system with a tour of the Jovian
moons. Along the first part of the transfer the spacecraft is
subject to the gravity attraction of the Sun, the gravity dis-
turbance of Jupiter and the thrust of the electric propulsion
engine. During the capture part of the transfer the spacecraft
is subject to the gravity attraction of Jupiter, the gravity
disturbance of the Sun and the thrust of the electric engine.
The maximum thrust delivered by the electric engine was
computed as a function of the power provided by the solar
panels. For each one of the two parts, a different reference
system was considered. Each part then was split into a
number of phases. Each phase corresponds to a transfer arc
connecting two planets or two moons.

An appropriate set of inter-phase constraints was used to
assembled together all the phases, forming a single Nonlinear
Programming problem comprising the two parts of the transfer.
The NLP problem was then solved with a sparse sequential
quadratic programming algorithm.

2.1 Dynamic Models

The spacecraft is modelled as a point mass subject to the
gravitational attraction of the Sun and Jupiter, and to the thrust
delivered by one or more low-thrust engines. The motion of the
spacecraft is described in the J2000 mean ecliptic reference
frame centred on the Sun (see Fig. 1) during cruise, and in the
J2000 mean equatorial reference frame centred on Jupiter dur-
ing capture and the tour of the Jovian moons. The three compo-
nents of the thrust vector u represent the control:
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where ρ is the position vector of the perturbing body with
respect to the principal one, d = r - ρ is the position vector of
the spacecraft with respect to the perturbing body and µB is the
gravitational constant of the perturbing body. The state and the
control vectors are then defined as follows:
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where m is the mass of the spacecraft.

An upper bound Tmax and a lower bound Tmin was put on the
thrust magnitude:

2 2 2
min maxx y zT u u u u T≤ = + + ≤ (5)

The upper boundary is set equal to the maximum level of
thrust provided by the selected low-thrust engine, while the
lower limit was set to 1x10-4 times Tmax to avoid singularities in
the Hessian matrix when minimum mass problems are solved.
The mass flow rate of the engine is given by,

0sp

um
I g

= −� (6)

where Isp is the specific impulse of the engine and g0 the gravity
on Earth surface.

Fig. 1 Heliocentric inertial reference frame, where the ecliptic
plane lies in the x-y plane.
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2.2 Swing-by Model

The simplest way to model a gravity assist manoeuvre is to use
a linked-conic approximation where the sphere of influence of
a planet is assumed to have zero radius, and the gravity ma-
noeuvre is considered as instantaneous. Therefore, the instanta-
neous position vector is not affected by the swing-by:

0i P= =r r r (7)

where ri is the incoming heliocentric position, r0 is the outgo-
ing heliocentric position vector and rp is the planet position
vector, all taken at the epoch of the encounter. For an ideal
hyperbolic orbit not subject to perturbations or ∆v manoeuvres,
the modulus of the incoming relative velocity −�v  must be
equal to the modulus of the outgoing relative velocity +�v :

v v v− += =� � � (8)

Furthermore, the outgoing relative velocity vector is rotated,
due to gravity, by an angle β with respect to the incoming
velocity vector. Therefore, the following relation must hold:

2, cosv β+ − =� � �v v (9)

where the angle of rotation of the velocity vector is:
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All quantities with a tilde are relative to the swing-by planet
and pr�  is the periapsis radius of the swing-by hyperbola.

2.3 Power Model

One of the major issues for an interplanetary transfer using
solar electric propulsion is the power available to the engine.
More specifically, the thrust level depends on the power pro-
vided by the solar arrays, which, in turn, is a function of the
distance from the Sun. The maximum thrust that the engine can
deliver depends on the engine characteristics, such as the spe-
cific thrust Fsp on the effective input power Pin provided by the
power system and on an efficiency coefficient ηe:

max e in spF P Fη= (11)

The effective input power is the effective power produced
by the solar arrays minus the power required by all the subsys-
tems onboard the spacecraft PSS:

*
in eff SSP P P= − (12)

The power delivered by the solar arrays is a function of the
temperature and of the distance from the Sun:
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where P1AU is the power generated at one Astronomical Unit
(AU), Ts is the temperature of solar arrays, RS is the distance
from the Sun, T0 the reference temperature, CT is the tempera-
ture coefficient which express the variation of performance of
the array with temperature, ηS is the efficiency of the power
system and αss is the solar array Sun aspect angle, i.e. the angle
between the normal to the cell surface and the Sun direction.

The steady state surface temperature of the solar panels is a
function of the distance from the Sun:
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where S0 is the solar constant at 1 AU, σ is the Stefan-Boltzmann
constant, αs is the surface absorptivity in the solar spectrum, εs
is the surface emissivity in the infrared spectrum, and κ is a
coefficient which takes into account the surface area radiating
in the infrared spectrum with respect to the one that receives the
solar input. The maximum power that can be handled by the
PPU (Power Processing Unit) is assumed to represent the upper
limit for the engine thrust.

*
maxmin( , )in inP P P= (15)

The required power is a key factor in the sizing of the
solar arrays and power system, and therefore can be used to
provide an estimation of the overall dry mass of the space-
craft. The characteristics of the power system are summa-
rised in Table 1.

3. OPTIMISATION APPROACH

The design of an optimal trajectory involving a huge number of
swing-bys with multiple resonant orbits was approached in two
steps. First, we developed a procedure to find a set of good first
guess solutions (FGS) both for the cruise part and for the
capture part of the transfer. Afterwards, the most promising
first guesses were optimised with a direct optimisation method.
The trajectory model described in the previous section was
used in the second step of the design while a simplified model
was used in the first step of the design. In this section, we
describe the procedure and the model employed to look for first
guess solutions.

3.1 Global Search

The transfer from the Earth to Europa can follow different
paths; each one characterised by a particular sequence of grav-
ity assist manoeuvres, transfer time, launch date and departure
C3 (square of the asymptotic velocity at departure). In order to
make the exploration of the space of all the possible transfers to
Europa efficient, a reduced trajectory model was developed.
The reduced model is based on a number of simplifying as-
sumptions on the expected characteristics of the desired trans-
fers. In particular, the orbits of the planets and of the moons
were assumed to be coplanar and circular. Two search proce-
dures were developed: one for the design of the transfer from
the Earth to Jupiter, and one for the capture in the Jovian system
and the tour of Jupiter’s moons.

3.1.1 Interplanetary Transfers

A key element of the design of a multi-gravity assist trajectory,
either with low-thrust or chemical propulsion, is the position,
along the orbit of the planets, at which the gravity manouvre
occurs. The orbital position is a function of the time at which
the manouvre occurs, therefore, we can build a multi-gravity
assist trajectory by knowing the dates of the swing-bys. Given a
sequence of swing-bys we want to find the set of dates at which
we can perfom a gravity manouvre that minimises the ∆v we
have to deliver with the propulsion system. We call this prob-
lem the phasing problem in the remainder of the paper.
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Solving exactly the phasing problem is a difficult task,
therefore we try at first to compute an approximated solution to
this problem. The solution is then used as first guess to design
an optimal multi-gravity assist trajectory. First, we assume that
the orbits of the planets are coplanar and that two subsequent
gravity assist manoeuvres at planets A and B are connected by a
conic arc. The exact time of transfer from A to B is approxi-
mated with a multiple of the Hohmann transfer time:

( ) ( ) ( ) ( )32 1 2 1 / 8H A B ST m T m a aπ µ∆ = + ∆ = + + (16)

where aA and aB are the semi-major axes of planets A and B, and
m∈`  is the number of spacecraft revolutions on the transfer
orbits. The assumption is that the exact time of the transfer will
be in the interval [ (1 ) (1 )]T Tε ε∆ − ∆ +  with ε small. We com-
pute now the departure times from planet A which solve the
phasing problem.

We start considering Fig. 2, which shows the position of the
planets A,B at the reference time t0 and at the initial and final
time of the transfer from A to B. The angular position of the
planet A,B at the initial and final time respectively are:
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0 0
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where ωB and ωA are the angular velocities of the arrival and
departure planets respectively, and θA0, θB0 are their angular
position at the reference time t=0. Now we impose the phasing
contraint:

(2 1)BFINAL AINITIAL k kθ θ π− = + ∈` (18)

Using the definitions of θBFINAL and θAINITIAL we find an ex-
pression for all the tINITIAL that solve the phasing problem:
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The dates of departure can be further restricted so that the
transfer occurs around the projection of the line of nodes onto
the ecliptic.

Equation (19) solve the phasing problem providing the times
tINITIAL at which the spacecraft leaves the planet A. We use now
this equation to compute the launch date and swing-by dates for
multiple gravity assist trajectories.

We start by dividing the trajectory in N phases or transfer
legs connecting subsequent swing-bys. For each phase i we use
equation (16) to compute the transfer time ∆T(i) and Eq. (19) to
compute the time t(i)

INITIAL at which the spacecraft is expected to
leave the ith planet. To each t(i)

INITIAL we associate a departure
date from Earth by subtracting the time of flight of the preced-
ing phases.
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In an ideal scenario we would like to find a set of parameters
k(i) so that all the t(i)

Launch are equal to the desired launch
t(1)

Launch. In general, however, we minimise the merit function:
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For each sequence of planets and set of spacecraft revolu-
tions, problem (21) is solved, with a fast branch and prune
procedure exploring the space of N admissible integer vari-
ables k(i) , i = 1,…,N. The resulting set of transfer solutions can
be ordered according to the value of the merit function (21).
The algorithm minimising the function F in (21) was imple-
mented in a sofware code called BS1.

3.1.2 Multiple Synchronous and Resonant Orbit Transfer

The second part of the mission is a tour of the Galilean
moons, which starts with a highly eccentric orbit around
Jupiter (following the capture manoeuvre) and ends with a
gravity assist at Europa. The trajectories in the Jupiter sys-
tem use several Synchronous Orbit Tours (SOT) of the moons.
A SOT is a sequence of resonant orbits linked by a number
of gravity assist manoeuvres. Synchronous Orbit Tours are
ballistic, there are no deep space manoeuvres and have no
phasing constraints. Since a non-optimal sequence of reso-

TABLE 1 : Power System Characteristics.

PARAMETER ηe ηS CT T0 κ εs αs Tmax PSS

Value 0.9 0.9 3e-4 K-1 290 K 1.8 1.0 0.8 423 K 300 W

Fig. 2  The phasing problem for a transfer from body A to body B.
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nant orbits (and gravity manoeuvres) can lead to very large
transfer times, we developed the software tool BS2 to design
minimum-transfer time SOTs.

3.1.3.1 Synchronous Orbit tour

A Synchronous Orbit Tour is a sequence of N gravity assist
manoeuvres with a given moon M at a constant position rM
along the moon’s orbit. If we assume a linked-conic model for
the ith gravity assist manoeuvre (with i = 1,...,N), then we can
define an incoming velocity vector i

−v  and an outgoing veloc-
ity vector i

+v  with respect to Jupiter at rM, before and after the
GA. Once i

−v  and i
+v  are defined, we can compute the veloc-

ity i
−�v  and i

+�v  relative to the moon and the associated orbital
plane of the gravity assist hyperbola. Since the physical con-
straint (8) must hold, in the remainder of this section we will
use iv�  to indicate the modulus of the relative velocity without
distinction between incoming or outgoing vectors. The initial
conditions for a SOT are given by the vector

1,
T− 

 Mr v

The SOT terminates when the velocity modulus Nv+  of the
spacecraft reaches a target value vTarget (or equivalently when
the orbital energy of the spacecraft reaches a target value). The
outgoing velocity i

+v  uniquely defines the orbit connecting the
gravity assist number i to the gravity assist number i+1. Each
orbit has a unique period Ti and a unique resonance ratio ρi = ni/
mi = Ti/TM, where TM is the period of the moon and ni, mi are
two integer numbers. The transfer time associated to each orbit
is ∆ti = niTM = miTi, with the semi-major axis equal to:

(22)

where aM is the semi-major axis of the orbit of the moon. Note
that, we assume the orbits of the moons to be circular therefore
rM = aM.

Figure 3a shows the first phase of a synchronous orbit tour.
Figure 3b shows that the relative velocity i

−�v  is always in the
plane containing the initial spacecraft velocity 1

−v  and the
velocity of the moon vM. Note that as rotates i

+�v  at each GA,
the velocity i

+v  decreases. For a synchronous tour, the outgo-
ing velocity i

+v  is subject to the following constraints:
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where the deviation angle βi is bounded by:

0 i MAXβ β β≤ ≤ (25)

and βMAX is given by Eq. (10) with the minimum altitude of the
GA. Furthermore, if we define:
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then the modulus of the velocity vector is bounded by:
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The combination of Eqs.(23-28) yields:
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Equation (31) can be satisfied only when ,i MIN im m> ,
where mMIN,i is defined as:

, min
m

MIN i iI
m m

≠∅
= (32)

Fig. 3  Schematic of the SOT.
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and the set Im is defined as:

{ }min, ,m i i i MAX iI j m j mρ ρ= ∈ ≤ ≤` (33)

Also, ni ≥ nMIN,i, where nMIN,i is the smallest integer greater
than miρmin,i. As a special case, the velocity after the last GA,
vN, only needs to satisfy the constraint vN = vTarget. Thus, the
sequence ends when vmin,i < vTarget, or equivalently
ρmin,i > f(vTarget). Finally, the transfer time of the entire SOT is:

1 1

N N

i M i
i i

T t T n
= =

= ∆ =∑ ∑ (34)

Now an optimal SOT is such that, given the initial condi-
tions

1,
T− 

 Mr v

the time to achieve the target velocity is minimal. Equivalently,
looking at Eq. (34), an optimal SOT is such that:

, , 1
min

N

iN i
n
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`n m (35)
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,i MIN im m≥ (37)

,i MIN im m≥ (38)

,i MIN in n≥ (39)

min, arg( )N T etf vρ > (40)

Equations (35-40) defines an integer programming problem
which has a number of solutions that grown exponentially with
the number of gravity assists. In order to reduce the solution
space we seek for solutions that maximise the GA efficiency:

i
i

MAX

β
η

β
= (41)

The GA efficiency ηi of the phase i increases if the angle βi
increases. Equation (24) and Fig. 3b show that βi increases
when iv+�  increases, thus when the resonant ratio ρi decreases
(Eq. 23). We can conclude that the GA efficiency ηi increases
with either an increase of mi or a decrease of ni:

0

0

i

i

i

i

n

m

η

η

∆ < ∆
∆ >
∆

(42)

Since choosing a low ni implies also choosing a lower
transfer time, we replace the inequality constraint ni ≥ nMIN,i(mi)
with:

, ( )i MIN i in n m= (43)

With this assumption, the solution space is significantly
reduced and can be explored using a branch and bound tech-
nique. In particular, the software tool BS2 implements the
search, and prunes a branch when

1
1
iOPT

i jn n n−≥ −∑
where nOPT is the current optimum solution. BS2 was imple-
mented in Matlab and finds a six-gravity-assist SOT in less than
a second on a 2GHz laptop.

3.1.2.2 TheTtransfer to the Next Moon

In the previous section we showed how BS2 computes the
fastest SOT to reach a target velocity vTarget. Often the main
purpose of the SOT is to reduce the energy in order to minimize
the relative velocity of the spacecraft with respect to another
moon. Figure 4 shows the geometry of a transfer from moon A
to moon B. The aim is to minimize the velocity of the space-
craft relative to a Moon ( Bv�  in Fig. 4) subject to the con-
straints:

A fixedv =� (44)

minα α π< < (45)

where amin is the angle corresponding to a transfer from A to B
tangent to the arrival moon B. Note that, when a < amin the
transfer trajectory does not intersect the orbit of the moon B.

The problem was solved analytically as follows. First we
recall that the relative velocities at the moons A and B are:

2 2 2 2
B BB M B B Mv v v v vθ= + −� (46)

2 2 2 2
A AA M A A Mv v v v vθ= + −� (47)

where the velocity of a moon M on its orbit is /M Mv rµ=
and cosMv v vθ α= + �  is the transverse velocity of the space-
craft at the moon. Now if we subtract (47) from (46) and use the
conservation of the energy and of the angular momentum, we
get:
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where the term k2 is positive, therefore the velocity 2
Bv�  is

minimal if minα α= , i.e. when the transfer is tangent to the
moon B.

3.1.3 Optimal Impulsive Transfer Trajectories

The algorithm implemented in BS1 is fast and give a good
estimation of the set of optimal sequences of swing-by manoeu-
vres. In particular, it gives a good estimation of the right
phasing of the encounters with the planets. However, it does not
provide the correct computation of the total ∆v. Therefore, a
more sophisticated trajectory model, including deep-space ma-
noeuvres, was implemented in a third algorithm, called BS3.
BS3 was used to generate a more accurate FGS for all the
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electric propulsion options. The underlying idea is that optimal
impulsive transfers can be regarded as a limit case of a mini-
mum mass, low-thrust transfer with no limit on the thrust level.
Therefore, we assume that the solution that minimises the total
impulsive ∆v will also minimise the duration of the low-thrust
arcs and therefore the corresponding propellant consumption.
As the results of our case study demonstrate, this assumption is
true, provided that there is enough time to spread the velocity
variation over the whole arc with the given level of thrust. A
similar approach, was recently used by Okutsu et al. [9] to
design optimal low-thrust transfers to Jupiter, with analogous
results.

BS3 uses three dimensional analytical ephemerides for the
positions of the planets and a linked conic approximation for
gravity assist manoeuvres. The trajectory is split into phases
connecting two consecutive GAs, and each phase is again split
into two subarcs connected by a deep space maneuvers (DSM).
Figure 5 shows the geometry of an arc connecting the gravity
assist i at planet Pi to the gravity assist i+1 with planet Pi+1.
The independent variables are the time of the two gravity
assists ti and ti+1 and the time iDSMt  and iDSMr  position of the
deep space maneuver. Each subarc is then computed as the
solution of the Lambert’s problem [14]. The vectors. rPi and vPi
are the position and velocity of the planet Pi while the vectors

iDSM
−v  and 

iDSM
+v  are the velocities of the spacecraft before

and after the DSM.

Once all the subarcs are assembled together, the problem is
to find the date of each planet encounter, the launch and arrival
dates, and the points in space and time where to perform a
manoeuvre in order to minimise the sum of all required ∆vs.
The trajectory that minimises the fuel consumption from planet
P1 to PN makes use of (N-1) impulsive manoeuvres and (N-2)
flybys, therefore the solution vector of the resulting optimisation
problem has (6N-6) components:

1 1 -1 1

-1 ,1 , 2

= [ ,..., ,  , ...,  ,  

,...,  ,  ,  ...,  ]
N N

N

P P DSM DSM DSM

T
DSM p p N

t t t t r

r r r −� �

X
(49)

where tPi is the time at the ith planetary encounter, tDSMi is the
time of the ith impulsive manoeuvre, rDSMi is the position vector
of the ith impulsive manoeuvre and ,p ir�  is the pericentre alti-
tude of ith GA manoeuvre.

The optimisation problem can be formulated as follows

( )
(6 6)

1 1

3
1 1

min
i iN

N N

BS i DSM DSM
D i k

F v
−

− −
+ −

∈ ⊆ℜ = =
= ∆ = −∑ ∑

X
X v v (50)

subject to constraints (8) and (9). Two additional constraints
were introduced in order to limit the departure velocity from
Earth and the relative arrival velocity at Jupiter.

1   departure N arrivalv v v v< <� � � � (51)

From BS1 we obtained a first guess value for the time compo-
nents in the vector X, then an NLP solver was used to find an
optimal solution to problem (50).

3.2 Direct Optimisation

Once a promising first guess solution, both for the cruise part
and for the Jovian tour part, was available, the corresponding
trajectory was transcribed with a direct approach based on
Finite Elements in Time. This approach decomposes a general
trajectory design problem into M phases, each one character-
ised by a time domain DJ with j=1,..,M, a set of m dynamic
variables x, a set of n control variables u and a set of l param-
eters p. Each phase j has an objective function:

( ) ( )0 , , , , ,
f

i

t
j j b b j

f f
t

J t L dtφ= + ∫x x p x u p (52)

a set of dynamic equations:

( ), , , 0j t− =�x F x u p (53)

a set of algebraic constraints on states and controls:

( ), , ,j t ≥G x u p 0 (54)

and a set of boundary constraints:

( )
0

0 , , , 0
ftj b b

f
t

tψ ≥x x p (55)

A special subset of boundary constraints, called inter-phase
link constraints, are used to assemble all the phases together:

( )1, , , 0j b b
j j tψ − ≥x x p (56)

The time domain ( )0 , fD t t ⊂ R  relative to each phase j is
further decomposed into N finite time elements

( )1 1,jj N
i i i iD D t t= −= ∪ . For each time element D j

i, states and
controls  [x, u] are parameterised as follows:

Fig. 4  Schematic of a trajectory intersecting two orbits.

Fig. 5  Schematic of the a single trajectory leg implemented in
BS3.
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where the basis  functions fs are chosen within the polynomial
space of order (p-1):

1( ) p jf P Ds i
−∈ (58)

Therefore we can define a finite element as composed of a
sub-domain D ji and a subset of parameters [xs,us,p]. A group of
finite elements forms a phase, and a group of phases forms the
original trajectory. Note that an additional parameter set p may
occur in all constraint equations depending on their function in
the optimisation problem. Furthermore, phases can be put in
sequential order or in parallel with other phases depending on
their time domain and inter-phase link constraints. Thus, two
phases can share the same time domain but have different
parameterisations, different dynamic model and different ob-
jective functions.

Now, considering a general phase j, in order to integrate the
differential constraints (53), on each finite element i, differen-
tial equations are transcribed into a weighted residual form
considering boundary conditions of the weak type:

{ }
1

1 1 0      1,..., 1
i

i

t
T T j T b T b

i i i i
t

dt i N
+

+ ++ − + = = −∫ �w x w F w x w x
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where w(t) are the generalised weight (or test) functions de-
fined as:

1

1
( )

p

s s
s

g t
+

=
= ∑w w (60)

and gs is taken within the polynomial space of order p:

 ( )p jg P Ds i∈ (61)

Now the problem is to find the vectors xs∈ℜp*m, us∈ℜp*n,
p∈ℜl and [xb

f, x
b

0]∈ℜm that satisfy the variational equation
(59) along with algebraic and boundary constraints:

( ), , , 0j t ≥G x u p (62)

( )
0

0 , , , 0
ftj b b

f t
tψ =x x p (63)

where the quantities xs, and us are internal node values, xb
f

and xb
0 are the boundary values. Note that generally, the

order p of the polynomials can be different for states and
controls.

Each integral of the continuous forms (52) and (59) is then
replaced by a q-point Gauss quadrature sum, where q is taken
equal to p. For a continuous solution, in order to preserve the
continuity of the states at matching points, the following condi-
tion must hold:

1           1,..., - 2b b
i i i N+= =x x (64)

Thus all the boundary quantities in Eq. (64) cancel one
another except for those at the initial and final times. Algebraic
constraint equation (62) can be collocated directly at the Gauss
nodal points:

( )( ), ( ), , 0j
s s s s s sξ ξ ξ ≥G x u p (65)

The resulting set of non-linear algebraic equations, assem-
bling all the phases, along with discretised objective function
(52) can be seen as a general non-linear programming problem
(NLP) of the form:

min ( )J y (66)

subject to:

( ) 0

l u

≥
≤ ≤

c y
b y b (67)

where

0 0, , , , , ,
Tb b

s s f ft t =  y x u x x p
is the vector of NLP variables, J(y) is the objective function to
be minimised, c(y) a vector of non-linear constraints and bl and
bu are, respectively, the lower and upper bounds on NLP vari-
ables. The DFET approach was implemented in a software
code called DITAN (Direct Interplanetary Trajectory ANalysis)
[3, 4, 15]. Note that the DFET formulation accommodates the
optimisation of the controls parameters and a set of static
parameters p that can be related to spacecraft system character-
istics (e.g. Isp, power level, etc.).

4. MISSION DESIGN

In this section, we present some results that illustrate how to
apply the numerical approaches, proposed in the previous sec-
tion, to the design of a low-thrust multigravity assist trajectory
to Europa. The tools BS1, BS2, BS3 and DITAN will be
applied according to the following procedure:

1. BS1 is run to generate a pool of candidate solutions that
present a minimum violation if the phasing constraint .
The most promising ones are optimised with BS3
imposing a limit on the C3 at launch, the arrival at the
sphere of influence of Jupiter but no constraint on the
arrival velocity. The solutions computed with BS3 are
passed to DITAN to verify the assumption on the validity
of impulsive solutions as first guesses for low-thrust
solutions. The results of this first part of the design are
illustrated in section 4.2.

2. BS2 is run to find an optimal sequence of resonant
flybys to reach Europa (see section 4.3). Prior to this, we
performed an analysis of the required conditions for a
capture in the Jupiter system (see section 4.3.1).

3. The solutions computed with BS3 for the Earth-Jupiter
leg, are then optimised with DITAN imposing an arrival
velocity at the sphere of influence compatible with the
results of BS2.

4. The resonant orbits designed with BS2 are added, in
DITAN, to the rest of the Earth-Jupiter transfer, and the
trajectory is optimised as a whole (see section 4.4).

4.1 System Parameter Definition

The dynamic model in Eq.  includes the initial mass of the
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spacecraft and the maximum thrust level that the engines can
deliver. In particular, the required thrust level at Jupiter is the
driving parameter for the selection of the engine. We consid-
ered a minimum of 35 mN of thrust at Jupiter in order to be
captured (see the following analysis on the capture manoeuvre)
and a thrust-to-power ratio of 27 mN/W for the engine. The
power required at end of life (EOL) at Jupiter was estimated
using the power-to-thrust ratio of the engine and Eq.. From the
EOL power, the beginning of life power (BOL) at 1 AU was
used to calculate the size of the solar arrays and their mass. We
considered triple junction GaAs cells combined with solar
concentrators in order to reduce panel size. We assumed a total
mass of the spacecraft, including propellant, of 1500 kg and a
maximum C3 = 3.16 km2/s2. The final configuration consisted
of seven 150 mN ion thrusters for a total mass of the power and
propulsion systems reported in Table 2.

TABLE 2: Power and Propulsion System Budget.

Required Power 40 kW (EOL)
Solar Array Area 133 m2

Ion Thruster 49 kg
PPU 97 kg
Tank+Harness+Piping 30 kg
Flux Lines 15 kg
Control Unit 5 kg
Propellant 187 kg
Solar Array 416 kg
Total SEP Mass 773 kg
Total Spacecraft Mass 1500 kg

4.2 Earth to Jupiter Transfer

At first, we investigated the transfers from the Earth to Jupiter.
Venus was chosen as the first planet, in the sequence of gravity
assist manoeuvres to reach Jupiter, since the model in BS1 does
not deal with Earth-∆v-Earth arcs, therefore an Earth-Earth
resonant flyby could not be used. On the other hand, Venus
provides a higher ∆v change with respect to the other remaining
inner planets. Afterwards a flyby strategy to raise the apocentre
and pericentre was devised based on the algorithm coded in
BS1. BS1 yielded a wide range of transfers with several se-
quences. However, only the two most promising solutions gen-
erated by BS1 were optimised with the model implemented in
BS3 and then passed to DITAN. The requirement for the
optimised solution was to arrive at the sphere of influence of
Jupiter with no limit on the arrival velocity. In particular we
considered the sequence EVMEJ, and BS1 found solutions
which included a phasing orbit before the encounter with Ve-
nus. The results are shown in Figs. 6 and 7 and Table’s 3 and 4.
The top part of Fig. 6 and left part of Fig. 7 represent the first
guess solution computed with BS1 while the right hand sides of
the two figures represent the optimised solutions with DITAN.
The figures show that the optimised solution is very close to the
first guess, with very limited thrust arcs. The usefulness of the
search performed by BS1 is illustrated also by Table’s 3 and 4
where the dates of arrival and departure found by BS1 are
compared to the optimised dates of encounter with the planets
computed with DITAN. Considering that DITAN uses the JPL
DE405 ephemeris while BS1 uses the mean orbital elements,
the first guess and the optimised solution are very similar
except for the arrival at Jupiter of the first solution.

4.3 Tour of the Jovian System

The second part of the transfer comprises a capture phase and a
descent to Europa made of a number of SOTs.

Fig. 6  Solution number 1: First Guess Solution generated by BS1
(top) and optimised with electric propulsion (bottom).

4.3.1 Capture

At arrival at Jupiter the spacecraft exploits a gravity assist
manoeuvre with one of the moons to gain the required ∆v to be
captured in the Jovian system. We compute the period of the
post swing-by orbit, for each of the principal moons, as a
function of the velocity at the sphere of influence vSOI and of the
angle γ, between the incoming velocity v−  and the velocity of
the moon vM. The geometry is shown in Figure 8.

The period of the post swing-by orbit can be computed as a
function of the orbital energy post swing-by E:

( ) 3/ 2( , ) 2 2SoI JT v Eγ πµ −= − (68)

with

21( , ) ( ) ( cos cos ) cos( )
2SoI M M ME v v v v v v vγ γ β γ β− − −= − + + +

(69)
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and
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r
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where µJ is the gravity constant of Jupiter, µM is the gravity
constant of the moon, vM is the modulus of the velocity of the
moon, v− is the modulus of the incoming velocity of the space-
craft, pr�  is the pericentre of the swing-by hyperbola. Figure 9
shows the contour plot of the periods of the post swing-by orbits
for a pericentre altitude at each flyby of 300 km. Examining the

period of the first orbit after the capture, Ganymede, appears to be
the best planet for the first synchronous orbit. Figure 10 shows the
limit curves for which the post swing-by orbit is parabolic. In
particular, the figure shows that a Ganymede swing-by can insert
the spacecraft into a parabolic orbit around Jupiter if the velocity at
the sphere of influence is below 4.8 km/s (around 4.1 km/s at
infinity). Also, Figs. 9 and 10 show that the best capture conditions
are achieved when γ is around 15°-20°, regardless of the velocity
at the sphere of influence, and regardless of the moon chosen for
the first swing-by.

4.3.2 Resonant Descent to Europa

If we consider an ideal planar bi-impulsive transfer between
Ganymede and Europa, both having circular orbits, the lowest
velocity relative to Europa is Euv�  = 1.49 km/s. In general,
however, the relative velocity at Ganymede is higher then the

Fig. 7  Solution number 2: FGS generated by BS1 (left) and optimised with electric propulsion (right).

TABLE 3 : Optimal Solution 1.

GA Planet FIRST GUESS Optimised

Earth Dep (Phase 1): 12-02-2010 Dep:07-03-2010
(3692 MJD2000) (3719 MJD2000)

Venus Arr (Phase 1): 22-04-2011
(4130 MJD2000) Flyby: 04-04-2011

Dep (Phase 2):02-04-2011 (4112 MJD2000)
(4110 MJD2000)

Mars Arr (Phase 2): 06-11-2011
(4328 MJD2000) Flyby: 23-09-2011

Dep (Phase 3): 08-10-2011 (4284 MJD2000)
(4299 MJD2000)

Earth Arr (Phase 3): 23-06-2012
(4558 MJD2000) Flyby: 10-10-2012

Dep (Phase 4): 01-09-2012 (4667 MJD2000)
(4628 MJD2000)

Jupiter Arr (Phase 4): 26-05-2015 Arr: 27-04-2016
(5625 MJD2000) (5962 MJD2000)
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TABLE 4: Optimal Solution 2.

GA Planet FIRST GUESS Optimised

Earth Dep (Phase 1): 17-09-2003 Dep: 04-09-2003
(1356 MJD2000) (1343 MJD2000)

Venus Arr (Phase 1): 28-11-2004
(1794 MJD2000) Flyby: 16-10-2004

Dep (Phase 2): 07-11-2004 (1751 MJD2000)
(1773 MJD2000)

Mars Arr (Phase 2): 12-06-2005
(1990 MJD2000) Flyby: 25-04-2005

Dep (Phase 3): 12-05-2005 (1942 MJD2000)
(1959 MJD2000)

Earth Arr (Phase 3): 26-01-2006
(2218 MJD2000) Flyby: 29-12-2005

Dep (Phase 4): 11-02-2006 (2190 MJD2000)
(2234 MJD2000)

Jupiter Arr (Phase 4): 05-11-2008 Arr: 24-07-2008
(3232 MJD2000) (3128 MJD2000)

Fig. 8  The first swing-by at a Galilean moon captures the spacecraft
in the Jovian system. On the left, the hyperbolic approach and the
captured orbit (dashed curve). On the right, geometry of the swing-
by.

Fig. 9  Possible period of the first
orbit after the first gravity assist
of one of the moons as a function
of the velocity modulus at the
sphere of influence of Jupiter and
of the angle γγγγγ.



26

Massimiliano Vasile and Stefano Campagnola

one required for the Hohmann transfer. Yet low relative veloci-
ties at Europa (in the range from 1.5 km/s to 2 km/s) can be
achieved by a synchronous tour leading to a nearly tangent-to-
target transfer. This tour would exploit only gravity assist ma-
noeuvres of the moon, minimising the use of the low-thrust
engine. The moon sequence is made up of a synchronous
Ganymede tour until the pericentre has dropped to the orbit of
Europa. Then a synchronous Europa tour is performed until the
apocentre has decreased down to the orbit of Ganymede. A
final Ganymede flyby puts the spacecraft into a Ganymede-
Europa tangent orbit.

The tour of the Jovian moons was designed using BS2 to
estimate the best sequence of swing-bys. Once the initial condi-
tions for the tour were derived, they were passed to DITAN as
terminal constraints for the transfer trajectory from the Earth to
Jupiter. The result is represented in Fig. 11. The same sequence
estimated using BS2 was then optimised using DFET. The
result is reported in Table 5 for the tour of Ganymede and Table
6 for the tour of Europa. The last column represents the
resonances after the optimisation with DITAN while the fourth
column represents the resonances computed with BS2. For
example, for the first phase BS2 predicts 75 revolutions of

Ganymede (the value of n) and one of the spacecraft while the
optimised solution is a bit faster with 69 revolutions of the
moon and one of the spacecraft.

Since the real motion of the planets differs slightly from the
mean motion, there is an error of 0.15 % in the calculated
distance from the spacecraft to Jupiter while approaching
Ganymede. Such a small error is amplified when evaluating the
semi-major axis. The error in a is 5-6 % for a high energy orbit
and decreases to 0.5-0.6 % for lower energy orbits. This non-
linear behaviour explains the discrepancies between the first
guess and optimised solutions.

As a further confirmation of the effectiveness of the strategy
implemented in BS2, the designed tour of Jovian moons was
represented on Tisserand’s plane [16] (see Fig. 12), along with
the optimised sequence. The two sequences are remarkably
similar, which suggests that the model implemented in BS2
provides very good first guess solutions for the design of a
synchronous tour of Jupiter’s moons. It should be noted that the
tour proposed here does not take into account any constraints
on the radiation dose. However, by using BS2, the total dose
can be easily minimised by imposing further pruning condi-
tions. The distinct advantage of this sequence is that it allows
the spacecraft to reach Europa with a relative velocity of
1.65 km/s (optimised solution). This is a low value comparable
to the best results found in literature [17, 18]. If required,
endgame strategies can be applied at this point to further re-
duce the cost of the orbit insertion manoeuvre at Europa [17].

4.4 Optimal Assembled Solution

The two parts of the trajectory, the transfer phase from the Earth to
Jupiter and the tour phase, were assembled together to form a
single NLP problem for a single trajectory. The dynamical model
takes into account the gravitational perturbations due to the Sun
when the spacecraft is at Jupiter, and the gravity perturbation due
to Jupiter during the approach phase to the giant planet. The
resulting optimal solution is represented in Fig. 13 for the transfer
phase and in Fig. 14 for the Jovian tour. Thrust arcs are represented
with solid lines and coast arcs with dashed lines.

Fig. 10  Maximum velocity at the sphere of influence to insert the
spacecraft into a parabolic orbit with a moon swing-by, as a
function of the angle γγγγγ for different moons.

Fig. 11  First Guess Solution for the tour of
the Jovian moons.
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TABLE 5:  Optimal Ganymede Sequence From BS2.

PHASE APOCENTER APOCENTER RESONANCE n:m RESONANCE n:m
NUMBER (FGS) (OPTIMISED) (FGS) (OPTIMISED)

1 1.90e7 km 1.80e7 km 75:1 69:1
2 4.97e6 km 5.92e6 km 10:1 7:1
3 3.13e6 km 3.19e6 km 5:1 5:1
4 2.22e6 km 2.22e6 km 3:1 3:1

TABLE 6:  Optimal Europa Sequence from BS2.

PHASE PERICENTER PERICENTER RESONANCE n:m RESONANCE n:m
NUMBER (FGS) (OPTIMISED) (FGS) (OPTIMISED)

1 6.40e5 km 6.36e5 km 3:1 3:1
2 6.25e5 km 6.25e5 km 5:2 5:2
3 6.02e5 km 6.05e5 km 2:1 2:1
4 5.72e5 km 5.77e5 km 8:5 8:5

Fig. 12  Tour representation on Tisserand’s plane.

Fig. 13  Optimised solution: interplanetary
transfer.

Figures 15 to 18, represent the time history of semimajor-
axis, inclination, eccentricity, velocity modus, radius and
mass for the transfer trajectory, the capture and the complete
tour, showing the effect of each swing-by while Table 7
gives  the complete time history and the times of flight
(TOF) for the entire optimised transfer. The interplanetary
part of the transfer corresponds to the solution in Table 3,
however when assembling all the phases together, adding
also the Jupiter-centred part of the transfer, the optimiser
changes a bit the dates of departure and of encounter with
the planets and the propellant mass consumption for the
interplanetary leg increases to match the required velocity at
Jupiter to have a capture. Table 8 is a summary of the
characteristics of the gravity assist manoeuvres for the en-
tire optimised transfer.

5. CONCLUSIONS

In this paper, a mission to Europa was designed considering
solar electric propulsion as main source of thrust. We devised a
number of optimisation tools to design the whole trajectory:
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three deterministic algorithms to find a global optimum for
multiple gravity assist trajectories and a general optimisation
tool for optimal trajectory design based on finite elements in
time. The global search was extremely efficient at providing a
wide range of good first guesses. In particular, the large solu-
tion space of all the possible SOTs of Jovian moons was
explored in a few seconds. Despite the fact that the first guesses
were only optimal for a multi-impulse trajectory model, they

Fig. 14  Optimised solution: Jovian system.

Fig. 15  Orbital parameters during the interplanetary transfer.

were sufficiently good for the initialisation of the optimisation
with DFETs. The resulting solution shows how a mission to
Europa using solar electric propulsion could be feasible and
interesting. On the other hand, several problems are still open
and deserve further investigation, in particular, the total dose of
radiation for the designed tour. But many other efficient tours
can be easily designed. Also the final capture into a stable orbit
around Europa, which still requires a chemical manoeuvre,
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Fig. 16  Orbital parameters during capture (from Ganymede flyby 1 to 3).

Fig. 17  Orbital elements with respect to Jupiter, distance and velocity with respect to Ganymede and
mass during the synchronous tour of Ganymede.
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could be performed with low-thrust propulsion.

AKNOWLEDGEMENTS

The work in this paper was performed in 2002 when
Massimiliano Vasile was part of the ESA, Advanced Concept
Team at ESTEC and Stefano Campagnola was a student at
Politecnico di Milano and an intern at the Advance Concept

Fig. 18  Orbital elements with respect to Jupiter, distance and velocity with respect to Ganymede and
mass during the synchronous tour of Europae.

TABLE 7:  Time of Flights and Encouter Dates for the Entire
Optimised Solution.

Ph Celestial Body Dep. Date TOF Cummulative
N. (MJD) (D) Mission Time (Y)

1 Earth 3718.9 393.7 1.08
2 Venus 4112.7 166.5 1.53
3 Mars 4279.1 375.3 2.56
4 Earth 4654.4 1241.6 5.96
5 SOI of Jupiter 5896.1 110.6 6.27
6 Ganymede1 6006.7 492.7 7.62
7 Ganymede2 6499.3 93.0 7.87
8 Ganymede3 6592.3 35.8 7.97
9 Ganymede4 6628.1 21.5 8.03

10 Ganymede5 6649.6 1.2 8.03
11 Europa1 6650.8 10.7 8.06
12 Europa2 6661.4 17.8 8.11
13 Europa3 6679.2 7.1 8.13
14 Europa4 6686.3 28.4 8.21
15 Europa5 6714.7 39.6 8.32
16 Ganymede6 6754.4 2.0 8.32

Team. The paper was presented in the same year at the 2nd Low
Thrust International Symposium, CNES, IAS, Toulouse, France,
18-20 June 2002.

This work was funded in part by the European Space Agency.
The authors would like to thank Dr. Guy Janin, Mr. Franco Ongaro,
Dr. Saccoccia and Dr. Robin Biesbroek at the European Space
Agency for their generous support and expert guidance.



31

Design of Low-Thrust Multi-Gravity Assist Trajectories to Europa

TABLE 8:  Summary of Gravity Assist Characteristics for the Entire Optimised Solution.

Ph From To Dep. Dep. Arrival Arrival βββββ [°] Pericentre ∆∆∆∆∆VGA
N. Relative Absolute Relative Absolute Altitude (km/s)

Velocity Velocity Velocity Velocity (km)
(km/s) (km/s) (km/s) (km/s)

1 Earth Venus 1.78 28.32 6.71 36.89 61.66 753 6.88
2 Venus Mars 6.71 41.31 5.63 20.08 6.14 17478 0.60
3 Mars Earth 5.63 20.10 12.26 33.19 33.09 300 6.98
4 Earth SOI of Jupiter 12.26 38.52 4.30 8.63 - - -
5 SOI of Jupiter Ga1 - 4.30 6.40 15.74 9.01 200 1.01
6 Ga1 Ga2 6.40 15.16 6.60 15.17 8.46 217 0.97
7 Ga2 Ga3 6.60 14.69 6.61 14.68 8.39 235 0.97
8 Ga3 Ga4 6.61 14.02 6.61 14.02 8.49 200 0.98
9 Ga4 Ga5 6.61 13.42 6.60 13.42 8.50 200 0.98

10 Ga5 Eu1 6.60 12.60 4.25 17.26 10.48 200 0.78
11 Eu1 Eu2 4.25 16.89 4.29 16.88 8.89 512 0.66
12 Eu2 Eu3 4.29 16.53 4.35 16.50 9.25 366 0.70
13 Eu3 Eu4 4.35 16.00 4.37 15.99 9.61 268 0.73
14 Eu4 Eu5 4.37 15.39 4.45 15.36 8.83 379 0.68
15 Eu5 Ga6 4.45 14.76 2.04 8.90 39.10 2105 1.36
16 Ga6 Eu6 2.04 9.77 1.65 15.36 - - -
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