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A FAST TOUR DESIGN METHOD USING NON-TANGENT
V-INFINITY LEVERAGING TRANSFERS

Stefano Campagnola ∗ Nathan J. Strange † and Ryan P. Russell ‡

The announced missions to the Saturn and Jupiter systems renewed the space community
interest in simple design methods for gravity assist tours at planetary moons. A key element
in such trajectories are the V-Infinity Leveraging Transfers (VILT) which link simple im-
pulsive maneuvers with two consecutive gravity assists at the same moon. VILTs typically
include a tangent impulsive maneuver close to an apse location, yielding to a desired change
in the excess velocity relative to the moon. In this paper we study the VILT solution space
and derive a linear approximation which greatly simplifies the computation of the transfers,
and is amenable to broad global searches. Using this approximation, Tisserand graphs, and
heuristic optimization procedure we introduce a fast design method for multiple-VILT tours.
We use this method to design a trajectory from a highly eccentric orbit around Saturn to a
200 km science orbit at Enceladus. The trajectory is then recomputed removing the linear
approximation, showing a ∆v change of less than 4%. The trajectory is 2.7 years long and
comprises 52 gravity assists at Titan, Rhea, Dione, Tethys, and Enceladus, and several de-
terministic maneuvers. Total ∆v is only 445 m/s , including the Enceladus orbit insertion,
almost 10 times better then the 3.9 km/s of the Enceladus orbit insertion from the Titan-
Enceladus Hohmann transfer. The new method and demonstrated results enable a new class
of missions that tour and ultimately orbit small mass moons. Such missions were previously
considered infeasible due to flight time and ∆v constraints.

INTRODUCTION

The method of V-Infinity Leveraging Transfers (VILTs) has received new attention because of recently
announced plans to send spacecraft to orbit planetary moons in the Jupiter and Saturn systems. The trajectory
design of such missions typically includes a complex sequence of maneuvers and gravity assists at the moons
to efficiently solve the endgame problem of reducing the orbit insertion ∆v.

VILTs are used to modify the gravity assist v∞ with maneuvers. These transfers are built around the con-
cept of a leveraging maneuver∗ which generalizes the concept of a ∆V − EGA (i.e. using a ∆V between
Earth flybys to increase the effective launch energy). Leveraging maneuvers work by increasing the eccen-
tricity of the orbit around the central body to increase flyby v∞. Conversely, the flyby v∞ is decreased when
the leveraging maneuver reduces orbit eccentricity.

VILTs have been implemented in several missions3–6 and are the subject of several papers.7–13 The VILT
is primarily used to efficiently increase or decrease excess hyperbolic velocity relative to a planet or planetary
moon. Recent work10 has shown that leveraging can also be used to effectively increase the bending available
from flybys of low mass moons. This new application can be used to construct gravity-assist tours with low
mass moons that avoid degenerate, long flight-time, resonances (e.g. it can enable reaching a 1:1 resonance
when, at best, only a 19:18 resonance could be reached ballistically).
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‡Assistant Professor, Georgia Institute of Technology, Guggenheim School of Aerospace Engineering, 270 Ferst Drive, Atlanta, GA
30332-0150, ryan.russell@gatech.edu
∗V-infinity “leveraging” is a term first coined by Longuski and first documented by Williams.1 It is intended to evoke the gravity-

assist tour design terminology of “pumping” (changing orbit period) and “cranking” (changing orbit inclination).2
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In this paper, we derive a fast linear approximation that avoids the iterative solution for VILTs required pre-
viously.10 This fast approximation facilitates the investigation of a broader set of possible tours constructed
from VILTs, and consequently, the discovery of better trajectories. One first example of this was the solution
presented in a previous paper.10 Here we present the graphical method used for the design of that solution
and also present a second solution, with a substantial improvement of the total ∆v.

The first section of this paper studies the general VILT problem and its solution space. The main steps of
the section are (1) demonstrate that the solution space is almost flat for a specific choice of coordinates, (2)
construct approximated solutions using minimal memory storage. In the second section we exploit the large
reduction in complexity and computational time resulting from this approximation to develop a new design
method amenable for broad design space searches. In the third section we present the Enceladus orbiter
trajectory.

VILT

V-infinity leveraging transfers (VILTs) are trajectories around a major body (e.g., a planet) that start and
end at a minor body (e.g., a moon) and include one small impulsive maneuver (∆v) to achieve a large change
in the spacecraft velocity relative to the minor body (v∞). VILTs are usually modeled with two Keplerian
arcs patched by a tangential ∆v at the leveraging apse rLA∗, while the moon is in a circular coplanar orbit.
In most of the literature, one of the two Keplerian transfers is assumed tangent to the moon’s orbit (tangent
VILT) to to both simplify the analysis and to achieve a near optimal increase or decrease in v∞ at the moon.14

In cases where VILTs are patched together with flybys of non-massive bodies, the tangent VILT is very
inefficient in terms of flight time due to geometry of the flyby. As demonstrated in Figure 1, the impulsive
∆v vector associated with a gravity assist beginning with the tangent geometry is almost perpendicular to
the spacecraft velocity, thereby leaving the magnitude of the velocity relative to the central body almost
unchanged. Whereas in the case of the non-tangent flyby geometry, the ∆v vector goes almost entirely
towards changing the velocity magnitude. In the limit as the available turn angle approaches zero, the tangent
geometry flyby provides no change in energy while the most efficient energy change occurs in the non-tangent
case with pump angle equal to (π−arccos v∞). Following the work of Strange et al.,10 this lack of efficiency
for VILTs constrained by small turn angles motivates us to remove the tangent assumption.

Figure 1. Geometry of the gravity assists when the turn angle is small

∗The symbols are explained in the Notation section at the end of the paper.
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We normalize the distances and the times with the scale factors l∗ = ãM and t∗ =
√
ã3M/µ̃P , where the

tilde denotes the dimensioned variables. As a result of the normalization, µP = 1, vM = 1 and the VILTs
start and end at r = 1. We model the gravity assist as usual by linking two consecutive VILTs with an
instantaneous rotation of the v∞vector by the turning angle δ = 2 arcsin

(
µ̃M/(µ̃M + ṽ2∞r̃π)

)
, where r̃π is

the pericenter of the gravity assist. This is sometimes called zero sphere-of-influence gravity assist.

Classification and special solutions

We classify the VILTs with the parameter vector s = (σ1, k1, σ2, k2, EI, n) and the notation:

(EI) n : mσ1,σ2
k1,k2

where m = k1 + k2 + 1 is the number of spacecraft revolutions and the elements of p are:

ki i = 1, 2 Number of full revolutions in the ith arc

σi =

{
−1 Short transfer 2kiπ < ∆θ < π + 2πki
+1 Long transfer π + 2πki < ∆θ < 2π + 2πki

EI =

{
−1 Interior VILT (∆v at apoapsis)
+1 Exterior VILT (∆v at periapsis)

n Number of moon revolutions

Figure 2 shows an example of an exterior VILT on the left, and explains the notation for the first arc on
the right. In the figure the leveraging apse rLA is the apocenter, while the vacant apse rV A (opposite to the
leveraging apse) is the pericenter.

Figure 2. Example of exterior VILT on the left. On the right, the first arc of the VILT

A special family of VILTs is the family of tangent VILTs, described in Campagnola and Russell12 with
the notation n : mσ(k), where σ, k refers to the non-tangent arc. Note that n : mσ(k) is a special case of
a (EI) n : mσ1,σ

k1,k
VILT (first arc tangent to the moon’s orbit) and of a (EI) n : mσ,σ2

k,k2
VILT (second arc

tangent to the moon’s orbit).

A second special family of VILT is the family of ballistic transfers, where ∆v = 0 implies rV A1 = rV A2.
We classify the ballistic transfers with the notation n : mσ , where σ = 0 corresponds to the ballistic resonant
transfers, and σ = ±1 correspond to nonresonant transfers with slightly more or fewer than m revolutions,
respectively (also called generic or non-nπ returns). Note that n : m±1 is a special case of a (EI) n : m±1,±1k1,k2

VILT, while n : m0 is a special case of a (EI) n : m±1,∓1k1,k2 VILT.
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Phasing constraint

Using our notation, the true and mean anomaly spanned by the spacecraft in either arc are (see also Strange
at al.10):

∆f (σi,ki,EI) = 2πki − f |(σi,EI)
r=1 + π[1 + σi(EI − 1)/2] i = 1, 2 (1)

∆M (σi,ki,EI) = 2πki −M |(σi,EI)
r=1 + π[1 + σi(EI − 1)/2] i = 1, 2 (2)

where f |(σi,EI)
r=1 ∈ (−π, π] and M |(σi,EI)

r=1 ∈ (−π, π] are the true and mean anomaly of the spacecraft at
the moon. Using Eq.(1) and Eq.(2) we define the spacecraft angular gain :

(∆θ)i = ∆f (σi,ki,EI) − a3/2i ∆M (σi,ki,EI) i = 1, 2 (3)

where the second term is the true anomaly spanned by the moon , which is also the transfer time.

Due to the symmetry of the problem, each of the two arcs composing the VILT is completely defined with
only two independent variables (coordinates), like (ai, ei) or (rai, rpi) or (v∞i, rLAi), i = 1, 2. Thus four
coordinates completely define the VILT. However, as we patch the two arcs together, the VILT coordinates
must satisfy the apsis constraint equation:

rLA1 = rLA2 (4)

Also, the true anomaly spanned by the moon must equal the true anomaly spanned by the spacecraft, modulo
2π. That is , the VILT must satisfy the phasing constraint equation10 :

(∆θ)1 + (∆θ)2 = 2π(k1 + k2 + 1− n) (5)

For a choice of the VILT parameter vector s = (σ1, k1, σ2, k2, EI, n) and under certain regularity con-
ditions which we do not discuss here, the Submersion Theorem15 applied to Eq.(4) and Eq.(5) shows that
the solution space of the VILT is a two-dimensional differentiable manifold. In other words, we have a four
dimensional space with two constraints leaving two degrees of freedom. We denote the VILT manifolds with
the notation Vs, where s is the VILT parameter vector.

Coordinates

In this section we introduce some choice of coordinates (independent variables) which describes a Keple-
rian arc. In the next section we use these coordinates to write the constraint equations (4-5), i.e. to define the
embedding space and compute the VILT manifold.

If we choose (ra, rp) as coordinates, many orbital parameters take a very simple form, as shown in Table
1. The formulas∗ in Table 1 are derived using the conservation of momentum and energy.

Another two choices of coordinates are (rLA, v∞) and (rLA, rV A) , for which we derive the following
coordinate transformations:

ϕ : (rLA, rV A) 7→ (ra, rp) =

{
(rLA, rV A) if EI = +1
(rV A, rLA) if EI = −1

(6)

and
∗In the table, the third third row comes from v2∞ = 1+ v|2r=1 − 2h = 1+ (2− 1

a
)− 2

√
p . The fourth row uses the trigonometry

identity tan f
2
= ±

√
1−cos f
1+cos f

. The fifth row uses the trigonometry identity sinE = 2
tan(E/2)

1+tan2(E/2)
.
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Table 1. Some useful two-body mechanics formulas as functions of ra, rp in normalized variables

(a, e, p)
(
ra+rp

2 ,
ra−rp
ra+rp

,
2rarp
ra+rp

)
(va, vp)

(√
rp
ra

2
(ra+rp)

,
√

ra
rp

2
(ra+rp)

)
v∞

√
3− 2

ra+rp
− 2
√

2rarp
ra+rp

f |(σi,EI)
r=1 (−σEI) arccos

(
2rarp−ra−rp

ra−rp

)
and (−σEI)2 arctan

(√
ra
rp

(1−rp)
(ra−1)

)
E|(σi,EI)

r=1 (−σEI) arcsin

(
2

√
(1−rp)(ra−1)
ra−rp

)
and (−σEI)2 arctan

(√
(1−rp)
(ra−1)

)
M |(σi,EI)

r=1 (−σEI)

[
2 arctan

(√
(1−rp)
(ra−1)

)
− 2

√
(1−rp)(ra−1)
ra+rp

]

ψ : (rLA, v∞) 7→ (rLA, rV A) (7)

where rV A is given by Eqs.(8) and (9)∗

vLA = rLA − EI
√
r2LA − 3 +

2

rLA
+ v2∞ (8)

rV A =
(
2/(rLAvLA)2 − 1/rLA

)−1
(9)

(ra, rp) Tisserand Graph

The ra − rp Tisserand graph †, shown in Figure 3, is the domain (ra, rp), ra > 1; rp < 1, where each
point represents one Keplerian orbit in the orbital plane of the moon. In this domain we plot the v∞ level
sets, i.e. the family of curves ra(rp; v∞) or rp(ra; v∞) which we compute using Eqs.(8) and (9) and treating
v∞ as a parameter. Zero sphere-of-influence gravity assists and impulsive maneuvers are jumps on the graph.
In particular, Figure 3 shows the effect of a tangent ∆v at apocenter (pericenter respectively) that brings the
spacecraft from the point B to the point C (D respectively). Figure 3 also shows a gravity assist that moves
the spacecraft from the point A to the point B on the same v∞ level set . Note that the gravity assist shift is
limited by the minimum altitude constraint.

It was shown13 that the ra − rp Tisserand graph is in fact the Tisserand-Poincaré (T-P) graph restricted to
the ra > 1; rp < 1 domain. The T-P graph is a Poincaré section in the spacecraft-moon-planet three body
problem with constant energy level sets (which are the v∞ level sets in the Tisserand graph).

Solution space representation

In this section we use the coordinates introduced previously to represent the VILT solution space. Other
choices of coordinates are possible.10

First we write the spacecraft angular gain of Eq.(3) as function of (ra, rp) using Table 1:

∗From the conservation of energy and momentum we find the quadratic: v2LA− 2vLArLA+2
(
1− 1

rLA

)
+1− v2∞ = 0. Using

energy-based arguments we can pick the correct root, as shown in the formula. The second equation is derived from the conservation of
energy.
†The Tisserand graph was originally introduced in a (Period, rP ) plane.9, 16 The (ra, rp) representation is much more useful for

the leveraging transfer problem as the leveraging maneuvers move along lines of either constant rp or constant ra.10, 12, 13

5



Figure 3. ra − rpTisserand graph (schematic) with the effects of a gravity assist and
of tangent ∆vs at pericenter or apocenter

∆θ(σ,k,EI)(ra, rp) = 2πk + σEI arccos
(

2rarp−ra−rp
ra−rp

)
+ π[1 + σ(EI − 1)/2]+

−
√

(ra+rp)3

8

(
2πk + σEI

[
2 arctan

(√
(1−rp)
(ra−1)

)
− 2

√
(1−rp)(ra−1)
ra+rp

]
+ π[1 + σ(EI − 1)/2]

)
(10)

Then we choose the coordinates (rLA, v∞1) for the first arc and (rLA, rV A2) for the second arc, and write
the phasing constraint Eq. (5) using Eq.(10) with the coordinate transformations Eq.(6-7):

∆θ(σ1,k1,EI) ◦ ψ(rLA, v∞1) + ∆θ(σ2,k2,EI) ◦ ψ ◦ ϕ(rLA, rV A2) − 2π(k1 + k2 + 1 − n) = 0 (11)

where the circle ◦ denotes function composition.

For a given VILT parameter vector s, we solve numerically Eq.(11) to compute the two dimensional man-
ifold Vs embedded in (rLA, rV A2, v∞1). We also take sections of the manifold at v∞1 = const, which we
denote as γsv∞1. From the Implicit Function Theorem,15 we know that the sections γsv∞1 can be written as
curves

rsLA(rV A2; v∞1) (12)

satisfying Eq.(11), which we can plot on a Tisserand graph.

The special families of VILTs described previously (ballistic and tangent VILTs) must satisfy one addi-
tional constraint equation (rV A1 = rV A2 for the ballistic solution, rV A1 = 1 or rV A2 = 1 for tangent VILT)
and are therefore one-dimensional subsets of Vs.12 Their intersections with v∞1 = const. are points.

Figure 4 shows the manifold V(1,0,−1,3,+1,5) associated to the (+1) 5 : 41,−10,3 VILT, embedded in the
(ra, rp2, v∞1) space. It also shows the family of ballistic transfers 5 : 40 and the VILTs tangent at departure
(+1) 5 : 4−1(3) and at arrival (+1) 5 : 4+1(0). As expected, the tangent VILTs are the boundaries of the
manifold. Note that the VILTs tangent at departure are not defined for v∞1 greater than ∼ 0.15.

Figure 5 on the left shows a close up of the same manifold V(1,0,−1,3,+1,5) and of the ballistic and tangent
families. In the same space we plot the pericenters of the first arc rp1 as function of (ra, v∞1), which
we compute using Eq.(8-9). The plane v∞1 = 0.12 generates the section γsv∞1,or equivalently the curve
rp2 = (ra; v∞1), and the curve rp1(ra; v∞1), i.e. the v∞1 level set of the Tisserand graph. The plane also
intersects the ballistic and tangent VILTs in the points P1,P2,P3. The point P2 represents the ballistic
transfer, i.e. the solution with rp1 = rp2. Figure 5 on the right shows the same section as a Tisserand graph.
It is effectively a rotated frontal view of the 3D plot. In this example, the tangent VILTs are the vertical jumps
from the rp1 curve (i.e. the v∞1 level set) and the rp2 curve (the manifold section γsv∞1). In particular, the
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Figure 4. The manifold V(1,30,−1,3,+1,5) , set of the solutions to the (+1) 5 : 4+1,−1
0,3

VILT with v∞1 = 0.12. The tangent VILTs (+1) 5 : 4−1(3) and (+1) 5 : 4+1(0) are
at the boundary of the manifold

figure shows the tangent VILTs with two solid arrows, noting that the tangent VILTs must begin or end at
rp = 1. The dashed arrow is an example of non-tangent VILT.

The manifold sections can have a small fold close to rp = 1, so that their numerical computation using
continuation methods is often cumbersome. Therefore, we suggests using v∞2 as a continuation parameter.
For advanced continuation methods we refer to Doedel at al.17

Piecewise linear approximation

Figure 4 suggests that the manifolds Vs and their sections γsv∞1 are almost flat (with the exception of a very
small region close rp = 1 not visible in the picture). Then we can approximate the curves γsv∞1 with linear
or piecewise linear functions, which we construct using the ballistic and tangent solutions. Another approach
would be to approximate the entire manifold Vs with one plane; in the future we envision investigating the
accuracy of this second method, which would allow the storage of a family of solution manifolds with only a
few parameters.

The one-dimensional solution spaces of ballistic and tangent VILTs (non-approximated) can be computed
and stored easily (much more efficiently than two-dimensional Vs).12 In what follows we assume that the
families of ballistic and tangent VILTs are stored as points ra(v∞1), rp1(v∞1) for a discrete set of v∞ in the
feasible domain [v∞1min, v∞1max] .

We can now compute a linear approximation of γsv∞1 for a given s and v∞1. We use the stored data to
retrieve (up to) three points (rV A2, rLA) ∈ γsv∞1:

• the ballistic solution belonging to the family of ballistic transfers n : m(σ1+σ2)/2 (the point P2 in the
example of Figure 5).

• the VILT tangent at departure, belonging to the family of tangent VILTs n : mσ2,k2 (the point P3 in
the example of Figure 5).

• the VILT tangent at arrival, belonging to the family of tangent VILTs n : mσ1,k1(the point P1 in the
example of Figure 5).

If v∞1 is outside the allowed range [v∞min, v∞max] for one family of tangent VILTs, we can still use two
points to construct a linear instead of a piecewise linear approximation, as shown in Figure 6 (c). Figure
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Figure 5. On the left, close up of the manifold V(1,0,−1,3,+1,5) and its section at v∞1 =
0.12. On the right, the manifold section on the Tisserand graph (rotated frontal view
of the section in the left). The points P1 and P3 are the tangent VILTs (represented
with the vertical arrows), while P2 is the ballistic transfer

5 on the right shows the piecewise linear approximation with black dots. We note that the approximation
completely overlaps the real solution.

For a fixed (EI) n : m, and for a given v∞1, there are in total 4m curves γsv∞1(one for each possible
combination of σ1, σ2, k1). We can compute their linear approximation by retrieving up to 3 + 2m stored
points (one for each ballistic and tangent VILT solution). Figure 6 shows all the twelve curves γsv∞1 for a
(+1) 4 : 3 VILT with v∞1 = 0.15. The linear approximations are the dotted curves. Note that the VILT
tangent at arrival has no solution for k1 = 2. In this case we only use P1 and P2 to compute the linear
approximation.

DESIGN OF MULTIPLE GRAVITY ASSIST - MULTIPLE VILT TRAJECTORIES

The graphical analysis developed in the previous section forms the basis for a new design method to
compute multiple gravity assist - multiple VILT trajectories.

For the sake of clarity, in this section we consider a sequence of VILTs and gravity assists at one moon
only. In particular, we are interested in the design of a sequence of VILTs and gravity assists at Dione to
bring the spacecraft from a point A to a point Z of the Tisserand graph in Figure 7. Our design approach
however is very general and can be equally implemented to drive the spacecraft everywhere in the Tisserand
graph, depending on the mission requirements. Note that a VILT provides a mechanism to efficiently change
the v∞. If points A and Z were on the same v∞ level set, the A to Z transfer could be accomplished using
gravity assists only. In figure 7, the four vertical arrows represent VILTs while the arrows following the v∞
contours are gravity assists.

Building block

We begin the design with one building block of the trajectory, which we call a phase, consisting of one
gravity assist and one VILT. The first phase of the Dione part of the trajectory is shown in detail in Figure 7.
The point A represents the initial conditions. The gravity assist moves the spacecraft to the point B on the
v∞1 level set. Then the VILT moves the spacecraft to the point C on a solution curve γsv∞1 .

How do we design this phase, i.e. how do we find the coordinates of the points B and C? We know that
B must be on the v∞1 level set; in order to choose a single VILT and the associated gravity assist, we could
think of plotting all the solution curves γsv∞1 for all the possible parameter vectors s , and choose a point
on a curve satisfying some heuristic criteria (or just choose a discrete set of them). Unfortunately, for each
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Figure 6. Numerical (solid line) and approximate (dots) solutions of the (+1) 4 :

3σ1,σ2k1,k2 VILTs for k1 = 0 (a), k1 = 1 (b), and k1 = 2 (c). The left column shows a close
up of the right pictures. The signs in the box are the signs of (σ1, σ2) for the different
curves
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Figure 7. A sequence of gravity assists and VILTs at Dione brings the spacecraft
from a Rhea-Dione transfer (point A) to a Dione-Tethys transfer (point Z). The solid
line curves are v∞ level sets (bold lines for v∞ = 1, 2, ...km/s). The lines with slope -1
represent orbits with the same resonance. The box on the bottom right shows a close
up of the first gravity assist (from A to B) and of the first VILT(from B to C)

resonant ratio n : m there are 4m curves γsv∞1 , and each point of each curve requires solving numerically
Eq(11). As a result, even the calculation of a discrete set of possible C would be computationally expensive;
it would also produce a clouds of points difficult to visualize and evaluate.

We tackle this problem in two steps: first we limit the time of flight of the phase, i.e. we limit the number
of moon revolutions n for the VILT; second for each m we replace the associated 4m solutions curves with
2 piecewise linear curves computed with m + 2 stored data points. This second step is achieved with the
following assumptions:

• We assume the gravity assists do not flip the sign of the flight path angle. Note that flipping the flight
path angle results in a very large bending angle, and leads to inefficient (if not infeasible) gravity
assists. To impose this condition, we put a constraint on σ1 because σ1EI is the sign of the flight
path angle following the gravity assist. In particular, when patching two phases together we require
σ1EI = (−σ2EI)previous phase. This halves the number of γsv∞1 curves to be computed.

• We use the linearized approximation to γsv∞1 explained in the previous section; for a fixed n : m and
σ1 we compute the 2m piecewise linear curves using 2 +m stored data points.

• We disregard suboptimal solutions. In particular, for each n : m ,σ1,σ2 we replace the m piecewise
linear curves (k1 = 0, . . . ,m − 1) with one piecewise linear curve, where for each rV A we chose the
minimum rLA greater than rLAmin. This last assumption is better explained in Figure 8, where we plot
the γsv∞1 for (+1) 5 : 4−1,−1k1,k2 (with k1 = 0, . . . , 3 ; k2 = m − k1 − 1) and v∞1 = 0.3, together with
two piecewise linear curves (in bold) obtained for two different initial conditions, hence two different
rLAmin.

With these assumptions we compute a discrete set of possible choices for C in a very short time (� 1
second for a Matlab code on a laptop PC). We can plot the results and apply some heuristic approach to
choose the next point, or loop through them in a global search algorithm like branch and bound.18

The sequence

The sequence of Dione VILTs and gravity assists in Figure 7 is designed by applying iteratively the ap-
proach explained above. The point C of the first phase becomes the new initial condition (point A) of the
second phase. The last point of the last phase (the point Z) must allow a transfer to Tethys. Note that the
initial and final points A and Z of the sequence are usually at different v∞s. In Figure 7 ṽ∞ = 0.82 km/s at
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Figure 8. Five solution curves for the (+1) 5 : 4−1,−1k1,k2 VILT, and two optimal curves
(piecewise linear, in bold) obtained choosing the lowest ra for each rp, for two different
initial conditions

the initial point A , while ṽ∞ = 0.64 km/s at the final point Z. Accordingly, the sequence must reduce the
v∞.

The following comments about VILTs are important for the design:

• It is more efficient to reduce or increase the v∞ if rV A2 is close to 1, that is on the top (left) part of the
Tisserand graph for exterior (interior) VILTs. In particular, tangent VILTs maximize the change of v∞
for a given ∆v12(under the assumption of tangent burns at the apse).

• In direct contrast to the previous bullet, the gravity assist is least efficient in reducing or increasing
semi-major axis if rV A1 is close to 1 (see Figure 1). As a consequence, tangent and near-tangent VILTs
have an adverse affect on total transfer time. Therefore the design is a careful trade study balancing the
fuel efficiency of tangent VILTs with the time efficiency of non-tangent gravity assists.

• A ∆v which increases (decreases respectively) v∞ can lead to a desired decrease (increase) of semi-
major axis. In some cases the only way to reach a short time-of-flight resonance is to accept an increase
(decrease) in v∞.

• Minimum altitude gravity assists always lead to the largest change in ra and rp.

• Minimum altitude gravity assists do not always reduce the total transfer time. In some cases a higher
altitude gravity assist can lead to a VILT with a preferred resonance (i.e. with a lower n).

Using these comments and the graphical method presented, we design the transfer in Figure 7 in a few steps.

Example of design

Using the assumptions and comments presented in the last sections, we design the first phase of the Dione
part of the trajectory. The initial conditions and general assumptions are the following:

• The initial apocenter relative to Saturn is 527,063 km and the initial pericenter is 377,000 km, and
ṽ∞1 = 0.82 km/s.

• The flight path angle before the gravity assist is positive, which means that the first arc of the VILT
must be short (σ1 = −1).

• The maximum VILT time of flight is chosen as approximately 36 days, that is: n < 14 (the period of
Dione is 2.74 days)

• The minimum gravity-assist altitude for the first encounter is 100 km and 50 km for the following
gravity assists. A minimum-altitude gravity assists leads to the minimum ra of 510,495 km.
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Figure 9 shows the initial condition (point A) and the ṽ∞1 level set. It also shows some piecewise linear
curves marked with empty triangles or filled circles. In the area of interest there are only three n : m VILTs
with n < 14. The 13 : 10 VILTs are the two curves on the right, the 9:7 VILTs are the two curves in the
center, and the 5:4 VILTs are the two curves on the left.

A possible choice for the design of this phase consists of a gravity assist from A to B′, followed by a VILT
from B′ to C ′. This choice has the advantage to decrease the apocenter the most, with a short time of fight of
approximately 5 Dione revolutions. However, in order to reach the 5 : 4 VILT it is necessary to apply quite a
large ∆v (indicated by the large vertical displacement) and increase the v∞.

A different option is to make a gravity assist to from A to B, and a VILT from B to C which lies on the
σ2 = −1 curve. The transfer time is almost twice that of the previous option, however the ∆v is much smaller
and also results in a desired decrease of v∞. In this case we choose the second option, because it represents
a better compromise in the ∆v vs. time-of-flight trade; however it is clear that both presented options, and
probably a few more, might be considered for an exhaustive search of trajectory options. Note that the point
C is close to but not exactly at rp = 1, where the ∆v decreases the v∞ the most12 but the zero flight-path
angle is the least efficient for an energy changing gravity assist.

Once we select C as the chosen solution, we are ready to design the second phase, with Anew = C and
σ1new = −σ2 = +1. We apply this design approach iteratively to find the sequence of gravity assists and
VILTs shown in Figure 7.

Figure 9. Discrete sets of possible choices for the design of the first phase of
the sequence of VILTs at Dione. The curves with filled circles represents VILTs
with (σ1, σ2) = (−1,+1). The curves with empty triangles represents VILTs with
(σ1, σ2) = (−1,−1). The chosen design ABC consists of a 350 km altitude gravity
assist and of a 4.7 m/s VILT

ENCELADUS ORBITER TRAJECTORY DESIGN

Using the methodology presented in the previous section, we design a trajectory from a highly elliptical
orbit around Saturn (from the orbit following the pericenter raise maneuver in the Titan Saturn System Mis-
sion19) to a 200 km altitude orbit around Enceladus. The trajectory comprises 52 gravity assists and VILTs at
Titan, Rhea, Dione, Tethys and Enceladus, for a total time of flight tof ∼ 2.7 years and a total ∆v of ∼ 450
m/s including the Enceladus Orbit Insertion (EOI). We stress that this ∆v is almost ten times less than the
Titan- Enceladus Hohmann transfer ∆v .

We split the trajectory into five legs : Titan , Rhea , Dione , Tethys , and Enceladus. Each leg is composed
of gravity assists and VILTs at one moon only. The final conditions of each leg are taken as initial conditions
for the following leg; Note that we do not design the transfer connecting two consecutive legs, which is
considered beyond the scope of the paper and is expected to give small contributions to the total time of flight
(a few revolutions of the gravity-assist moon) and total ∆v.

The time of flights and total ∆vs are recomputed solving the numerical VILTs, showing an agreement with
the approximate piecewise linear VILT values within 3.3% (less than 0.02 % in most cases).
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Figures 7 and 10-13 show the Tisserand graphs of the different legs of the trajectory, while Figures 14-18
show the trajectory in the x − y plane. In each plot, the star is the location of the first flyby, while the circle
is the location of the last flyby. Tables 2-6 show the ∆v, gravity assist altitude, and the time of flight of all
the phases of each leg. Table 7 summarizes the total ∆v and time of flight for each phase. We compare the
solution described above to a second solution we found previously with a larger ∆v and shorter time of flight.
This second solution was presented in Strange at al.10 We also compare both solutions with a Titan-Enceladus
Hohmann transfer. For completeness we also show the ∆v for the Saturn Orbit Insertion (SOI) and Pericenter
Raise Maneuver (PRM) and the associated time of flight.

Figure 10. VILTs and gravity assists at Titan. The solid line curves are v∞ level sets
(bold lines for v∞ = 1, 2, ...km/s). The lines with slope -1 represent orbits with the
same resonance

Figure 11. VILTs and gravity assists at Rhea. The solid line curves are v∞ level sets
(bold lines for v∞ = 1, 2, ...km/s). The lines with slope -1 represent orbits with the
same resonance

CONCLUSION

In this paper we study the solution space of the general V-Infinity Leveraging Transfer (VILT) problem
and demonstrate that the space is almost flat for a proper choice of coordinates. We derive an approximation
to the solution space which allows for fast computation of the transfers and associated design space searches.
This linear approximation is the first important result of the paper. Using the approximation and the Tisserand
graphs, we introduce a fast graphical design method for multiple-VILT transfers. This new design method is
the second important result of this paper. Using the new method we quickly and easily compute a trajectory
from a highly eccentric orbit at Saturn to a 200 km orbit at Enceladus. The trajectory includes 52 gravity
assists at Titan, Rhea, Dione, Tethys and Enceladus. The time of flight is 2.7 years, and the total ∆v is
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Figure 12. VILTs and gravity assists at Tethys.The solid line curves are v∞ level sets
(bold lines for v∞ = 1, 2, ...km/s). The lines with slope -1 represent orbits with the
same resonance

Figure 13. VILTs and gravity assists at Enceladus.The solid line curves are v∞ level
sets. The lines with slope -1 represent orbits with the same resonance

Table 2. Titan leg

Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V
[d] [km] [km/s] [km/s] [m/s]

Titan-1 31.4 2280 (+1) 2 : 1−1,+1
0,0 1.46 1.26 28.8

Titan-2 21.3 3000 1 : 1+1,+1 1.26 1.26 0.0
Titan-3 — 15090 transfer to Rhea
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Figure 14. VILTs and gravity assists at Titan

Figure 15. VILTs and gravity assists at Rhea
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Figure 16. VILTs and gravity assists at Dione

Figure 17. VILTs and gravity assists at Tethys
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Figure 18. VILTs and gravity assists at Enceladus

Table 3. Rhea leg

Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V
[d] [km] [km/s] [km/s] [m/s]

Rhea-1 9.5 100 (+1) 2 : 1+1,+1
0,0 1.66 1.68 1.9

Rhea-2 17.5 2510 (+1) 2 : 1−1,−10,0 1.68 1.67 1.4
Rhea-3 59.2 60 (+1) 13 : 7+1,+1

1,5 1.67 1.50 21.5
Rhea-4 39.1 70 (+1) 7 : 4−1,−12,1 1.50 1.30 25.1
Rhea-5 22.7 70 (+1) 5 : 3+1,−1

0,2 1.30 1.20 12.7
Rhea-6 36.1 270 8 : 5+1,−1 1.20 1.20 0.0
Rhea-7 13.6 150 (+1) 3 : 2+1,−1

0,1 1.20 1.09 14.6
Rhea-8 31.7 150 (+1) 7 : 5+1,−1

0,4 1.09 0.99 15.2
Rhea-9 40.7 120 (+1) 9 : 7+1,−1

0,6 0.99 0.90 16.9
Rhea-10 31.6 230 7 : 6+1,−1 0.90 0.90 0.0
Rhea-11 6.5 220 1 : 1+1,+1 0.90 0.90 0.0
Rhea-12 6.2 310 1 : 1+1,+1 0.90 0.90 0.0
Rhea-13 30.2 60 (-1) 6 : 7−1,−16,0 0.90 0.74 37.2
Rhea-14 18.1 50 4 : 5+1,−1 0.74 0.74 0.0
Rhea-15 — 3660 transfer to Dione
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Table 4. Dione leg

Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V
[d] [km] [km/s] [km/s] [m/s]

Dione-1 28.0 350 (+1) 9 : 7−1,−10,6 0.82 0.78 4.7
Dione-2 13.7 270 (+1) 5 : 4+1,−1

0,3 0.78 0.71 10.3
Dione-3 16.5 100 (+1) 6 : 5+1,−1

0,4 0.71 0.65 9.3
Dione-4 24.6 60 (+1) 9 : 8+1,−1

0,7 0.65 0.64 1.9
Dione-5 35.6 960 13 : 12+1,−1 0.64 0.64 0.0
Dione-6 2.7 120 1 : 1+1,−1 0.64 0.64 0.0
Dione-7 32.8 60 12 : 13−1,+1 0.64 0.64 0.0
Dione-8 19.2 190 7 : 8−1,+1 0.64 0.64 0.0
Dione-9 16.4 970 6 : 7−1,+1 0.64 0.64 0.0
Dione-10 — 620 transfer to Tethys

Table 5. Tethys leg

Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V
[d] [km] [km/s] [km/s] [m/s]

Tethys-1 13.4 250 6 : 5−1,−1 0.70 0.70 0.0
Tethys-2 13.2 60 (+1) 7 : 6+1,−1

0,5 0.70 0.66 6.0
Tethys-3 17.0 60 9 : 8+1,−1 0.66 0.66 0.0
Tethys-4 26.4 70 14 : 13+1,−1 0.66 0.66 0.0
Tethys-5 2.7 60 1 : 1+1,+1 0.66 0.66 0.0
Tethys-6 1.9 640 1 : 1+1,−1 0.66 0.66 0.0
Tethys-7 2.6 610 1 : 1+1,+1 0.66 0.66 0.0
Tethys-8 26.4 80 14 : 15−1,+1 0.66 0.66 0.0
Tethys-9 17.0 90 9 : 10−1,+1 0.66 0.66 0.0

Tethys-10 13.2 100 7 : 8−1,+1 0.66 0.66 0.0
Tethys-11 24.5 1020 (-1) 13 : 15−1,+1

14,0 0.66 0.63 6.2
Tethys-12 — 860 transfer to Enceladus

Table 6. Enceladus leg

Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V
[d] [km] [km/s] [km/s] [m/s]

Enceladus-1 27.4 240 20 : 17+1,−1 0.70 0.70 0.0
Enceladus-2 9.6 50 7 : 6+1,−1 0.70 0.70 0.0
Enceladus-3 20.7 50 (+1) 15 : 13+1,+1

4,8 0.70 0.74 6.1
Enceladus-4 12.3 50 (+1) 8 : 7−1,−13,3 0.74 0.70 6.5
Enceladus-5 23.3 50 (+1) 17 : 15+1,−1

1,13 0.70 0.59 19.3
Enceladus-6 12.3 190 9 : 8+1,−1 0.59 0.59 0.0
Enceladus-7 13.9 50 (+1) 10 : 9+1,+1

0,8 0.59 0.56 5.8
Enceladus-8 16.4 50 (+1) 11 : 10−1,−10,9 0.56 0.47 15.1
Enceladus-9 18.0 50 (+1) 13 : 12+1,+1

8,3 0.47 0.40 12.5
Enceladus-10 20.5 50 (+1) 15 : 14−1,+1

0,13 0.40 0.30 16.8
Enceladus-11 25.9 50 (+1) 19 : 18−1,+1

1,16 0.30 0.22 13.6
Enceladus-12 32.8 50 (+1) 24 : 23−1,+1

19,3 0.22 0.18 6.4
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Table 7. Trajectory comparison

New tour Tour from Strange et al.10 Titan-Enceladus
∆v [m/s] tof [days] ∆v [m/s] tof [days] ∆v [m/s] tof [days]

SOI+PRM 1,310 — 1,310 — 1,292 —

Titan tour 29 53 27 53 0 ∼ 50
Rhea tour 146 363 251 304 — —
Dione tour 26 190 90 108 — —
Tethys tour 12 158 28 134 — —
Encel. tour 102 233 96 144 — —
EOI 129 — 242 — 3,933 —

Tours + EOI 445 997 ( 2.7 y) 734 743 (∼ 2.0 y) 3,933 ∼ 50

only 445 m/s, including the Enceladus orbit insertion. For comparison, the Enceladus orbit insertion from
a Titan-Enceladus Hohmann transfer is almost 4 km/s. The low ∆v and flight time solutions presented in
this study embolden the already strong arguments to send an orbiter to Enceladus. The new method and
demonstrated results generally apply to any mission that tours and ultimately orbits small mass moons. This
class of high-science-value missions was previously considered impractical due to flight time and delta v
constraints.
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NOTATION

α Pump angle between the v∞ vector and the minor body velocity vector

δ Turning angle between the incoming and outgoing v∞ vectors of a gravity assist

γsv∞1 Section of the VILT solution manifold for a given s and v∞1

∆θ Spacecraft angular gain

σi Element of s: if +1 denotes a long ith arc, if −1 denotes a short ith arc

µM , µP Gravitational parameter of the minor and major body

EI Element of s: if +1 denotes exterior VILTs, if −1 denotes interior VILTs

f,E,M True, eccentric and mean anomaly of the spacecraft with respect to the major body

n Number of minor body revolutions during the VILT

m Number of major body revolutions during the VILT

ki Element of s: number of full revolutions in the ith arc

rπ Pericenter of the gravity assist hyperbola

ra, rp, a Apocenter, pericenter and semi-major axis of the spacecraft with respect to the major body

rLA, rV A Leveraging and vacant apses of the spacecraft with respect to the major body , i.e. the furthers and
closest apse to r = 1 respectively
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s VILT parameter vector; in particular s = (σ1, k1, σ2, k2, n, EI)

vp, va Velocity of the spacecraft at pericenter and at apocenter with respect to the major body

v∞ Velocity of the spacecraft relative to the moon at r = 1

Vs VILT solution manifold

1, 2 Subscripts indicates the first or second arc
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[17] E. J. Doedel, H. B. Keller, and J. P. Kernévez, “Numerical Analysis and Control of Bifurcation Prob-
lems: (I) Bifurcation in Finite Dimension,” International Journal of Bifurcation and Chaos, Vol. 1,
No. 3, 1991, pp. 493–520.

[18] A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete Programming Problems,”
Econometrica, Vol. 28, Jul 1960, pp. 497–520.

[19] N. J. Strange, T. L. Spilker, D. F. Landau, T. Lam, D. T. Lyons, and J. J. Guzman, “Mission Design for
the Titan Saturn System Mission Concept,” Astrodynamics Specialist Conference, Pittsburgh, PA, Aug.
2009. Paper AAS 09-356.

20


	VILT
	Classification and special solutions
	Phasing constraint
	Coordinates 
	(ra,rp) Tisserand Graph
	Solution space representation
	Piecewise linear approximation

	Design of multiple gravity assist - multiple VILT trajectories
	Building block
	The sequence
	Example of design

	Enceladus Orbiter Trajectory Design
	Conclusion
	Acknowledgments
	Notation

