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This paper shows how the BepiColombo trajectory near Mercury follows the invariant manifolds to its final capture. The
BepiColombo gravitational capture provides several recovery opportunities at nominal conditions and was designed by ex-
ploring the solution space entirely, without knowledge of the invariant manifolds. In this work we reproduced the trajectory
in the model of the elliptic restricted three body- problem (due to the high eccentricity of Mercury’s orbit) and showed that
it does follow the manifolds. Consequently we envision that manifolds should be used to give insight on the solution space,
speeding up the design and optimization process and there by saving cost.
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1 Introduction

BepiColombo is the cornerstone ESA approved mission to Mercury. Two spacecraft will be launched jointly in 2013 and
will reach their destination in 2019. The nearly 6-year long transfer includes several gravity assist and SEP (Solar Electric
Propulsion, i.e. ion engines) thrust arcs[1].At Mercury a chemical burn (Mercury Orbit Insert MOI) inserts the spacecraft into
a 400km x 12000 km polar orbit, with the line of apsides almost aligned with the Sun-Mercury eccentricity vector. To avoid
a potential single point failure of a classical hyperbolic approach, an arrival scenario is implemented where the gravity of the
Sun is exploited to weakly capture the spacecraft. This technique is called Gravitational Capture (GC).

Many GC trajectories can be found by simply varying the capture time and speed of the spacecraft, right before MOI. The
first GC trajectory for BepiColombo was thus designed by exploring the solution space[2]. Initial conditions were propagated
backward and forward with full ephemeris model. The trajectory which provided the best recovery opportunities was selected
for the 2012 baseline' (Figure 1 on the left). In case of failure of the orbit insertion, there are three more MOI opportunities at
almost nominal condition before the spacecraft eventually leaves Mercury’s sphere of influence. This trajectory can be better
understood in the frame of the spatial elliptic restricted three-body problem (ER3BP) due to the high eccentricity of Mercury’s
orbit. Figure 1 on the right shows the same GC computed in the ER3BP in the nondimensional pulsating frame where the
primaries are at normalized and fixed positions. In the same reference frame we also plot the trajectory computed with real
ephemeris.
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Fig. 1 Left: The BepiColombo gravitational capture in the Mercury equatorial reference frame. The trajectory was propagated with
full ephemeris model. Right: The same trajectory is plotted in the pulsating reference frame (dotted line, one dot each day), where the
Sun-Mercury vector is unitary and constant, aligned with the x-axis. The solid line is the trajectory computed in the ER3BP model.

2 BepiColombo and unstable orbits in the ER3BP

Unstable fixed points and periodic orbits and their stable and unstable manifolds play a key role in understanding any dy-
namical system[4]. For this reason we computed two quasi-periodic orbits and portions of their manifolds in the ER3BP, and
compared such trajectories with the BepiColombo GC.
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! In the last year the mission was redesigned for launch in 2013; the current GC is similar to the one studied here.
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First we sought periodic and quasi-periodic orbits around the libration points. We expected GC trajectories to follow the

stable manifolds of such orbits. In particular we computed a Lissajous orbit around L; with amplitude close to 4e-3 (by
comparison with the BepiColombo GC). Figure 2 (left) shows the Lissajous orbit and a single trajectory on its stable manifold
and a single trajectory on its unstable manifold.
We then looked at quasi-periodic around Mercury. We sought orbits with special symmetric features, allowing for several
recovery options at nominal conditions. For this reason we required the quasi-periodic orbit to cross the syzygy axis perpen-
dicularly when Mercury is at apohelium[3]. Figure 2 (center) shows the quasi-periodic orbit with trajectories from the stable
and unstable manifolds which shadow the GC trajectory. Note the orbits from the manifolds are also symmetric.

Finally we compared the unstable orbits and their manifolds to the BepiColombo GC in Figure 2 (right). Coming from
the interplanetary transfer, the spacecraft follows the stable manifold of the Lissajous and approaches L;. After less then
one revolution around the libration point, the trajectory shadows a heteroclinic connection between the Lissajous orbit and
the quasi-periodic orbit around Mercury. In case the first MOI fails, the spacecraft continues to shadow the symmetric orbit

and and will eventually escape Mercury’s attraction along the unstable manifold after several MOI opportunities at nominal
condition.
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Fig. 2 Trajectories in the pulsating reference frame (projection onto the xy plane). Left: The Lissajous orbit is plotted together with one
trajectory of the stable manifold (circle) and one trajectory of the unstable manifold (stars). Center: The symmetric quasi-periodic orbit
around Mercury is plotted with one trajectory of the stable manifold (star) and one trajectory of the unstable manifold (circle). Note the
manifolds are also symmetric. Right: The BepiColombo GC (solid line) shadows the stable and unstable manifolds.

3 Conclusions

We reproduced the BepiColombo trajectory in the model of the elliptic restricted three body problem, showing that it follows
the stable and unstable manifolds of quasi-periodic orbits. In particular, the manifolds of a symmetric quasi-periodic orbits
around Mercury play a key role as their symmetry properties provide several recovery opportunities to the mission. Conse-
quently, in the future, we envision using the manifolds to get a good idea of what kind of orbits are available at early design
stage. This insight will save time by speeding up the design and optimization process and there by saving cost.
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