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Space trajectories

o
"

» European Space Agency

» Mission Analysis Office (ESOC,
Darmstadt, Germany)

» Design and optimize trajectories
for interplanetary space missions




Space trajectories Example#1: Mission to Mercury |

» ESA cornerstone missions:
BepiColombo

» Two spacecraft in orbit
around Mercury
(magnetospheric and
planetary orbiter)

» Launch : 2014
» Cost: 1.5 billion $
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Gravity assists (reducing AV)
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» Electric propulsion

» I, =4000s, increase My

» Low-thrust 0.1N ...

» ...over long arcs (days/months)
» Power (solar array) and Xenon

» Example: Smartl mission to the
Moon (2003-2006)

» Optimal thrust law
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Mission to Mercury VII
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Space trajectories Example #2: Mission to Europa

O Sun
—— Venus
—— Earth
Mars
— Jupiter
—e— Planet encounter
/""| — Thrust arc

& Ph1: Earth - Venus
& Ph 2 :Venus - Mars
# Ph3: Mars - Earth

x10
« Ph 4 : Earth - Jupiter




Space trajectories Example #2: Mission to Europa

® Jupiter
lo
—— Europa
Ganymede
—— Callisto
—o— Planet encounter
—— Thrust arc

& Ph 57 - Capture
® Ph6-9 :GAT-GAS tour
@ Ph 107 :GAé—EUI transfer

x10°
@ Ph16 :GAB-EUG transfer




Optimal control theory Brief overview |

Definition
Optimal control problem : find X(t),d(t), to, t1 that minimize
the merit functional
t1
J=o(to,x(to),t1,x(t1)) + ) L(x(t),u(t),t)dt (1)
0

subject to the dynamic constraints

x(t) = f(x(t),u(t),1) (2)

and to the boundary constraints

v (to,x (to), t1,x(t1)) =0 (3)
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where

t el =[to,n]
¢ (to,x(to)  t1,x(t1)), L(x(t),u(t),t) €R
x(t) eR", x(-) € C(I,R")
u(t)e UCR™, u(-) € CO1, V)

v (to,x(to), t1,x(t1)) ERP, p<2n+2

af df ! dL dL
75757 757&

continuos in (x,u,t)
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Remarks
1. U can be a proper, closed subset of R™ (constrained controls)
2. If the cost functional is as in Eq. (1), we have a problem of
Bolza. Equivalent formulations are

2.1 The problem of Lagrange J = [ L(x(t),u(t),t)dt

to

2.2 The problem of Meyer J = ¢ (to,x(t0),t1,x(t1))

NOTE: We can transform a problem of Lagrange into a
problem of Meyer with the additional variable y(t) and the
constraint y(t) = L(x(t),u(t),t) and y(tg) =0

3. The dynamics constraints Eq.(2) can represent a second order
dynamical systems. E.g.

31 X:( . > 'f(x’“’t):( F(r;+u)

32 x= ( Z ) F(xu,t) = Y3




Optimal control theory Brief overview 1V

4. The boundary constraints Eq.(3) include fixed initial /final
times, fixed initial /final states, etc. E.g.

to
4.1 tg=0,t; = 1,x(tg) = xop becomes y = tp—1 =0
X(to)—Xo

5. Can be extended to manifolds: x(t) € M




Indirect methods Introduction

Indirect methods implement the necessary conditions given by the
Pontryagin principle to find x(t),u(t), to, t1.
How does the Pontryagin principle define the necessary conditions?
» Assume we have the optimal control X(t),7(t), o, t1
» Apply the arbitrary (but allowed!) variations §x,8u,dty, 011,
defined by e.g. %xg(t)|£:o
» Compute the first variation §J
» Impose §J >0
It's tricky to compute 8J for variations that satisfy all the
constraints Eq.(2-3). Then we use the augmented problem.




Indirect methods Augmented problem |

» Introduce the costates A (-) € cl (1,(R™)") and the multipliers
v e (RP)*

(R¥)" is the dual space of R¥. An element of (R¥)" pairs with an
element of TR to give a scalar: (A,%) € R or (v,y) € R. We can
identify R¥ with (Rk)* and TR, and write the pairing in compo-
nents as

Qi) =25 (v, p) = vy
» Introduce the control Hamiltonian

H(x,A,u,t) = L(x,u,t)+ (A, f(x,u,t)) (4)

> Introduce ¥ =@+ (v, y)
> Introduce J¥ = &V + [ (H— (A, %)) dt




Indirect methods Augmented problem Il

Definition
Augmented optimal control problem: minimize the merit
functional JV subject to Eq.(2-3)

Remarks

1. If x(t),u(t),to,t1 is a solution to optimal control problem,
then it is also a solution of the augmented problem for
arbitrary values of A and v.

2. Paradox: don't we have a more difficult problem to solve (both
constrained optimization problems)? Yes, but we can choose A
and v, which are arbitrary, to simplify 6J. For instance, we
can choose them to delete the terms that multiply the
variations 8x, 0tg, 0t1, which should be otherwise computed as
functions of du.




Indirect methods Pontryagin minimum principle |
By imposing 6J > 0 we find the following necessary conditions

u(x(t),A(t),t) =arg u(ntm)igUH(Y(t),A(t), u(t),t) (5)

- _ dH(x, A, u,t
(1) = F(R(0). A1) 1) = 220D ()
u=tu(X,A,t), x=X
= dH(x,A,u,t)
A(t)= ——2 (7)
dx U=Ti(X,A,t), x=X

together with the b.c. Eq.(3) and the transversality conditions
20V

(52— Hi ) sta-+ (o iy ) 8t + (g + 41100 ) 3 (xtto)) + ( 50y ~4e2) ) 3 (x(ta)) =0

where here H;) = H(x(t;), A(ti), u(t), ) ,i = 0,1




Indirect methods Pontryagin minimum principle |l

Remarks
1. If U=R" (but U open would suffice) then Eq.(5) is often
replaced by
JdH 0%H
0 Z >
du 0, du? 20 (8)

However, Eq.(5) is a stronger condition: the optimal control at
any given time minimizes the Hamiltonian over the set of all
possible controls. Eq. (8) only gives the necessary conditions
for a local minimum of H with respect to w.

2. Even if Eq.(5) says that at any time ¢, u(t) is global optimum
for H, the necessary conditions for optimality of J as function
of u(+),x(+), to, t1 are only local!

3. Eq.(6-7) is a 2n dimensional dynamical system: we need 2n-+2
b.c. (e.g, initial and final time + 2ni.c.). The 2n+2 b.c. and
the p parameters v are found with the p b.c. Eq.(3) and with ,
the 2n+ 2 equations from the transversality conditions. ¢
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(x0,y0) X

» Launch into circular orbit from flat Earth.

» Very simplifying assumptions, yet it was used by the guidance
system of the SaturnV (that sent the men on the Moon), with
some refinements.

» we want to minimize the fuel mass: because we assume
constant thrust, we equivalently minimize the final time.




Indirect methods Example #:1: linear tangent steering law |
» Problem formulated as follow: minimize

J=t
subject to the dynamic constraints
X = Vx
y = vy
- F
Vx o COS O
Vy = micos—g

and to the boundary constraints

to = 0
X ( to ) = X0
y(t) = ¥
Vx ( tO) = Vx0
Vy ( to ) = %o
y(n) = h
Vx ( t ) = Vcirc
v(t) = 0
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1. Compute the Hamiltonian
1 2 sF s F
H=(A,f) =2 vx+A1%, + A Ecosa—k/l sinat—g

2. Compute the costate equations

11 _  9OH _

A =—5r= 0 Al = a
212 :—%—I;: 0 )’2 = C2

: —

A4 —_9H _ g2 At = —otta
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3. Compute the optimal control

4 94
gg 13—sma+k4§cosa 0—>tana_§t3:_§t3
Thus
+3
cosQ =
() + (24
. +A4
singt =
(A3 + (A4

To solve the ambiguity of the sign, let's compute

32;2’ - —g <j: (13)2 +(7L4)2>
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Because we want ‘377';’ > 0, we choose the minus sign

3
cosa =
(A3 + (2%’
. A4
sina =
(A3 +(2%)°

4. Compute the transversality conditions

P P aIdY aIdv

<Tto - H(0)> Sto+ (Ttl + H(1)> 5t + <W(to) +/1(fo)> 6 (X(to))+ <W(t1) —A(ts
where X = (x,y, vy, Vv, ). Because the initial time and position
are fixed, 0ty = 6(X(to)) = 0; also the final y, vy, v, are fixed,
so 0 (y(t1)) = 8 (v(t1)) = 8 (vy(t1)) = 0. The differential
reduces to

(zq;lv +H(1)> oty + <aic(btv1) 711(1'1)) 8(x(t1))=0
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which results in the two equations

IV
H(l):_ atl :—1
IV
1 _ _
M) =5 ~°

5. Summary: the optimal trajectory is solution of the 8th
dimensional dynamical system

X = Vy
y = i Vy
Vx = et cos ¢
T cosa—g
Al = 0
A2 = 0
A3 = Sy
1 4 2

- —A
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with the 10 boundary conditions

to = 0
X(l’o) = Xg
y(to) = Yo
Vx(tO) = Vx0
v(to) = wyo
y(tn) = h
Vx(tl) = Vcirc
v(t) = 0
ll(tl) = 0

Hq = -1

Note that we can use the final conditions A1(t1) = 0 to find
c1 = 0. Then the optimal control is the tangent linear control

law .
—7L Co Cy
tana = —5=——t+—
—A c3 c3
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IMPORTANT REMARKS
> In order to compute the optimal trajectory, we need to solve a
two-point boundary-value problem (2pbvp), because some of
the boundary conditions are at the initial time, some others are
at a final time. This is the strategy:

» Guess a value for the five variables
AL(to),A%(t0),A3(t0),A%(to), t1.

» Integrate the system of 8 ODEs.

» Verify that the final conditions match the 5 final constraints. If
not, use the residual to correct the initial guesses and repeat.

» Solving the 2bpvp is the major problem of indirect methods:

» Guessing the value of the costate is not easy - there is huge
literature dedicated to this problem.

» The differential corrector schemes required to solve the 2pbvp
are not simple to implement, especially when the vector field is
not continuous (see bang-bang control).

» The system is highly nonlinear, i.e. very sensitive to the initial Egi7{)
conditions. =
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1. We now consider dynamical systems like

{ Cz\,/f(r)Jr G(v)+u

with the assumption

9F _(9F\' 96 _ (9G\' ©
or \adr) ' ov dv
2. We consider merit function J = ¢ + [ Ldt where the control
Lagrangian can be

21 L=1 ul® = J= Ik ||u]|® dt Minimum control effort
22 2t —9 e.g:
du

» =1 — J=[1dt=t; — tp Minimum transfer time
» L=0 — J=m(tg) — m(t1) Minimum fuel mass




Indirect methods Primer vector theory ||
» The primer vector theory shows that u is aligned with 8r and

with A, where A, is the costate associated to the velocity, and
Or is solution of the linearized system
. OF . 8G .
6!":751’-’ 76”" ].O
ars + or (10)
» The optimal control vector points towards a neighbor moving
point being subject to the same vector field. (Marec)

» Nice interpretation of the costates
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Proof

1. Compute the control Hamiltonian

H=L+ (A v) + (Ay, F(r) + G(v) + u)
= L+ (W) v+ (W), (FI() + GV (v) + )

2. Compute the costates equations

{ (Ar),= =5 == ), 5

A) =—9H = (&), - (A); 55 (11)
i dv J

J ori




Indirect methods Primer vector theory 1V
3. Differentiate the second Eq.(11) and use the first Eq.(11), and

Eq.(9)

= (’Lv)fgi -(a), ?9(51 -
=) aBI:J <V>J?9fl

This shows that A, is a solution of the linearized system
Eq.(10) (A, is the aligned with dr)
4. Minimize H to find the optimal control
41 H=1 |ul®>+ (A, u) +... has a minimum at T = —”%—‘V’H
(aligned with &r, Q.E.D.)

42 H=1+(A,,u)+... has no minimum(!!), unless we introduce
a contraint like ||u|| < Umax. Then H has a minimum at

U= _H%ﬁu’"ax (aligned with &r and with 4,, Q.E.D.)
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» Assume we have the following dynamical system:

r=v
v=F(r)+G(v)+uL
m=—T/k

where the control functions are v and T, ||u|| =1,
0< T < Thmax and k is a constant (exhaust velocity).

» Assume we want to minimize the propellant mass or the
transfer time. In either case, L =0 and the Hamiltonian is

H = <x,,v>+<AV,F(r)+G(v)+u;>+<am,—r/k>
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» Let's minimize H with respect to u

_ : Ay
u=argminH = —
lell=1 Av]]

» Let's minimize H with respect to T

= T
T = argmin H= argmin (—5)

0< T< Trax 0< T < Tax m

where we used Eq.(12) and introduced the switching function
m

S = A+ 2,

» Then we have the bang-bang control:

5§>0 — T = Tmax
5<0 —T=0
S5=0 — T =7
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Bang-bang control, cost arcs,
H constant in time

Figure: Bang-bang control




Direct

methods Introduction

Discretize the trajectory (transcription) and solve a large
(sparse) Non-Linear Programming problem, typically with
some Sequential Quadratic Programming algorithm.

Constraints are added easily

PMP can be used to check the optimality of the solution
Robust, if coded right

Very slow

Limited accuracy




Direct methods Example: Finite differences

>

Not a good transcription method, but useful to illustrate the
general idea

Time, trajectory and control are discretized:

to,t1,..-,tn
Xi:X(t;)i: 1,....N
ui=u(t)i=1,....N
We introduce a discretized version of Eq.(1-2), using for
instance Euler method
. N-1
J(xj,uj, t7) = @(to, X0, tn, xn) + Y, L(xi,uj, i) (tip1 — t7)
i=0
g(xj, Uy, t7) = xit1 —xi — £ (x;, uj, i) (tisn — ;) =0 (13)
Then we solve the parameter optimization problem of

minimizing J subject to the algebraic constraints Eq.(13) and 5
boundary conditions.




Direct methods Collocation

» Assume the states/controls can be expressed through
orthogonal function. E.g., polynomials:

K =at’+bt+c

» Then the dynamic constraints are replaced by a set of
algebraic collocation constraint like

x(t
§<t;+t,-+2> _f<)~<<t —l—t,+2> <t +tiy
2
—f (X(tiy1),

» |n practical application, we would use other orthogonal

functions
N
X = Z r,-(t))”(,
i=1

sy

(tit1) (tit1),tit1) =0




Direct methods Finite element in time

» Finite elements in time, also called Gauss pseudospechtral
methods, replace the dynamic constraint with its weak form:

t1
- t1
[ )+t ) de = ()l
The equation is then transformed into a set of algebraic
equations, where the states, control, and weight functions are
discretized using orthogonal functions collocated on
Gauss-Lobatto nodes




Direct methods DMOC

» DMOC replace the dynamic constraint with the
Lagrange-d'Alambert principle

tl tl
5/ .i”(q,q,t)dt—i-/ u(t)8q(t)dt =0
t0 t0

The equation is then transformed into a set of algebraic
equations like

D2L(qk71,qk,h)+ DlL(ququrl?h) + ulj—l + U; =0
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