INDIRECT METHODS FOR SPACE TRAJECTORY OPTIMIZATION
Lorenzo Casalino
Indirect Optimization Methods

Outline

• introduction
• indirect methods: how to make them
 – optimization of discrete systems
 – optimization of continuous systems
 * calculus of variations and indirect optimization
 * solution of boundary value problems
 – indirect trajectory optimization
• indirect methods: how to make them work
 – general rules
 – hints and tips
Trajectory Design

- Trajectory design usually requires maximization or minimization of a performance index (e.g., maximize final mass or payload, minimize, ΔV, propellant consumption or trip time) for given mission requirements.

- Typical missions
 - Transfer between specified orbits
 - Rendezvous mission (transfer from a specified orbit to a definite time-dependent position on a target orbit)
 - Interplanetary missions (rendezvous missions with planets' gravity)
 - Station keeping
Trajectory Model

• spacecraft state defined by state variables \(x_i, i = 1, n \)
 (position, velocity, mass, angular position and velocity for attitude control)

• a propulsion system can produce thrust (or angular momentum) to modify the rate of change (derivative) of the spacecraft velocity

• thrust components are typically the control variables \(u_j, j = 1, m \)
Indirect Optimization Methods

Optimization Problem

- system of equations \(\dot{x}_i = f_i[x_1(t), ..., x_n(t), u_1(t), ..., u_m(t), t], \) for \(i = 1, n \)
- boundary conditions concerning state (and possibly control) variables at initial, final and possibly intermediate points
- find the control variables \(u_j(t) (j = 1, m) \) and the corresponding trajectory \(x_i(t) (i = 1, n) \) that maximize a given performance index \(J \) while satisfying differential equations and boundary conditions
Trajectory Assumptions

- preliminary design usually (but not necessarily) admits simplifications
 - two-body problem
 - patched-conic approximation for interplanetary transfers
- it is often convenient to split a complex trajectory into elementary legs that are then patched together
Solution Methods (1)

- direct methods
 - discretization of trajectory and controls
 - start from tentative solution
 - evaluate performance index and constraints and respective gradients
 - change tentative solution with the aim of improving performance index and constraint fulfillment
Solution Methods (2)

- indirect methods
 - continuous system described by differential equations with assigned boundary conditions
 - derive first-order necessary conditions for optimality and define a boundary value problem
 - start from tentative solution
 - evaluate error on boundary conditions and error gradient
 - change tentative solution with the aim of reducing the error
Solution Methods (3)

- evolutionary algorithms
 - more suitable to deal with a low number of parameters (impulsive missions)
 - solution described by finite set of variable values
 - random initialization of a population of different solutions
 - new solutions are created by combining old solutions (typically, using some random process) with the aim of creating new populations with improved performance index
Direct Methods

• pros
 – capability of treating complex problems
 – easier treatment of constraint “structure”
 – higher robustness

• cons
 – scarce accuracy (may require solution refinement)
 – high computational cost
 – solution may depend on tentative values and be suboptimal
Indirect Optimization Methods

Indirect Methods

- **pros**
 - high accuracy
 - low computational cost and time
 - theoretical insight

- **cons**
 - difficult treatment of complex equations or constraints and necessary preliminary assumption of constraint “structure” (an “a posteriori” analysis may suggest changes)
 - lower robustness
 - find stationary solutions, possibly suboptimal, and dependent on tentative values
Evolutionary Algorithms

• pros
 – no tentative solution
 – higher robustness
 – “global” optimization

• cons
 – (possibly) scarce accuracy (may require solution refinement)
 – difficult treatment of constraints
 – heuristic methods: no proof of finding actual optimum
Indirect Optimization Methods

Introduction

Shooting Method

- both direct and indirect methods present unknown initial values and constraints or optimality conditions to be satisfied
- shooting method
 - choose initial tentative values for the unknowns
 - compute error on constraints
 - change tentative values
- errors on constraints may be very sensitive to the initial values, affecting convergence
Multiple Shooting

- split the trajectory into phases
- introduce the variable values at the start of each phase as additional unknowns
- enforce conditions for trajectory consistency (e.g., variable continuity) at the phase junctions
- reduced sensitivity, improved convergence
- higher computational cost? not always
Discrete Systems

Summary

• notation and assumptions
• one-variable optimization
• unconstrained multivariable optimization
• constrained optimization
 – equality constraints
 – inequality constraints
Vectorial Notation (1)

- a column vector is indicated by a bold character $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \cdots \\ a_n \end{pmatrix}$

- a row vector is written as the transpose of a column vector $\mathbf{a}^T = (a_1, a_2, \cdots, a_n)$

- the scalar product of two vectors (e.g., \mathbf{a} and \mathbf{b}, same dimension) is written as $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a}$
Vectorial Notation (2)

- the derivative of a column vector (e.g., a, n components) with respect to a scalar variable (e.g., t) is a column vector with components equal to the derivatives of the components of a with respect to t

$$\frac{da}{dt} = \dot{a} = \begin{pmatrix} \frac{da_1}{dt} \\ \frac{da_2}{dt} \\ \vdots \\ \frac{da_n}{dt} \end{pmatrix}$$

- the derivative of a scalar quantity (e.g., ϕ) with respect to a column vector (e.g., b, m components) is defined as a row vector with components equal to the derivatives of ϕ with respect to the components of b

$$\frac{d\phi}{db} = (\frac{d\phi}{db_1}, \frac{d\phi}{db_2}, \cdots, \frac{d\phi}{db_m})$$
Vectorial Notation (3)

- by extension, the derivative of a column vector (e.g., a) with respect to another column vector (e.g., b) is a matrix
- the i-th row contains the derivatives of the i-th component of a with respect to b
- the j-th column contains the derivatives of the constraints a with respect to the j-th component of b

\[
\frac{da}{db} = \begin{bmatrix}
\frac{da_1}{db_1} & \frac{da_1}{db_2} & \cdots & \frac{da_1}{db_m} \\
\frac{da_2}{db_1} & \frac{da_2}{db_2} & \cdots & \frac{da_2}{db_m} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{da_n}{db_1} & \frac{da_n}{db_2} & \cdots & \frac{da_n}{db_m}
\end{bmatrix}
\]
Assumptions

• performance index and boundary conditions are continuous and differentiable with respect to the variables
• existence of an optimal solution is usually assumed
One-Variable Unconstrained Optimization (1)

- \(\phi(\hat{x}) \) is maximum if \(\phi(\hat{x}) > \phi(x) \) (strong) or \(\phi(\hat{x}) \geq \phi(x) \) (weak) for any \(x \neq \hat{x} \)

- \(\phi(\hat{x}) \) is maximum (strong) if \(d\phi = \phi(\hat{x} + dx) - \phi(\hat{x}) < 0 \) for any choice of \(dx \neq 0 \) (weak maximum if \(d\phi \leq 0 \))

- if \(dx \) is small (local variation) use second-order Taylor’s expansion of \(\phi \)
 \[
 \phi(x + dx) = \phi(x) + gdx + \frac{1}{2}Hdx^2
 \]

- the first derivative of \(\phi \) is \(g = \frac{\partial \phi}{\partial x} \)

- the second derivative of \(\phi \) is \(H = \frac{\partial^2 \phi}{\partial x^2} \)
Indirect Optimization Methods

Optimization of discrete systems

One-Variable Unconstrained Optimization (2)

- a stationary point is characterized by \(g = 0 \)
- necessary conditions for a (local) maximum \(g = 0, \ H \leq 0 \)
- sufficient conditions for a (local) maximum \(g = 0, \ H < 0 \)
- \(H = 0 \) requires computation of additional derivatives to define the nature of the stationary point - if the first nonzero derivative is of order \(j \)
 - neither max nor min if \(j \) is odd
 - max if \(j \) is even and the derivative is negative
 - min if \(j \) is even and the derivative is positive
- the sign of \(H \) must be reversed for a minimum
Unconstrained Optimization (1)

- maximize $\phi(x)$
- x n-component vector of variables $x^T = (x_1, x_2, ..., x_n)$
- ϕ is maximum if $d\phi \leq 0$ for any choice of dx
- second-order Taylor’s expansion of ϕ (small variations)
 \[
 \phi(x + dx) = \phi(x) + g^T dx + \frac{1}{2} dx^T H dx
 \]
- the gradient of ϕ is g (n-component vector)
 \[
 g^T = \frac{\partial \phi}{\partial x} = (\partial \phi/\partial x_1, \partial \phi/\partial x_1, ..., \partial \phi/\partial x_n)
 \]
Unconstrained Optimization (2)

- the Hessian of ϕ is $[H]$ ($n \times n$ symmetric matrix)

$$[H] = \frac{\partial \left(\frac{\partial \phi}{\partial x} \right)^T}{\partial x} = \frac{\partial g}{\partial x} = \begin{bmatrix} \frac{\partial^2 \phi}{\partial x_1 \partial x_1} & \frac{\partial^2 \phi}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 \phi}{\partial x_1 \partial x_n} \\ \frac{\partial^2 \phi}{\partial x_1 \partial x_2} & \frac{\partial^2 \phi}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 \phi}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 \phi}{\partial x_1 \partial x_n} & \frac{\partial^2 \phi}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 \phi}{\partial x_n \partial x_n} \end{bmatrix}$$
Unconstrained Optimization (3)

- first-order expansion of ϕ provides $d\phi = \frac{\partial \phi}{\partial x} dx = g^T dx$
- ϕ being a local maximum (or minimum) requires $g = 0$ (necessary condition for a stationary point)
- an additional condition is required to determine the nature of the stationary point
- considering the second variation of ϕ at a stationary point ($g = 0$), one has $d\phi = dx^T H dx$
- for a maximum $dx^T H dx \leq 0$ for any dx, that is H negative semidefinite for a maximum (non-positive eigenvalues)
- sufficient conditions for a maximum $g = 0$ and $dx^T H dx < 0$ for any $dx \neq 0$, that is H negative definite for a maximum (negative eigenvalues)
Equality Constrained Optimization (1)

- maximize $\phi(x)$ (x is a n-component vector of variables) with $c(x) = 0$ (c is a m-component vector of constraints, $c^T = [c_1, c_2, ..., c_m]$, $m < n$)
- feasible points are those which satisfy $c(x) = 0$
- at a feasible point ϕ is maximum if $d\phi \leq 0$ for any admissible (i.e., that verifies $c(x + dx) = 0$) choice of dx
- at a feasible point, admissible variations require $dc = c(x + dx) - c(x) = 0$
Indirect Optimization Methods

Optimization of discrete systems

Equality Constrained Optimization (2)

- small variations are considered (local maximum)
- first order expansion of c gives $c(x + dx) = c(x) + [G]dx$
- $[G]$ is the Jacobian ($m \times n$ matrix)

$$
[G] = \left[\frac{\partial c_i}{\partial x_j} \right] =
\begin{bmatrix}
\frac{\partial c_1}{\partial x_1} & \frac{\partial c_1}{\partial x_2} & \cdots & \frac{\partial c_1}{\partial x_n} \\
\frac{\partial c_2}{\partial x_1} & \frac{\partial c_2}{\partial x_2} & \cdots & \frac{\partial c_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial c_m}{\partial x_1} & \frac{\partial c_m}{\partial x_2} & \cdots & \frac{\partial c_m}{\partial x_n}
\end{bmatrix}
$$

- the i-th row of G is the gradient of the i-th constraint c_i
- the j-th column of G contains the derivatives of the constraints with respect to the j-th variable x_j
- admissible (small) variations require $[G]dx = 0$ (m equations)
Equality Constrained Optimization (3)

- n variables, m equations allow for $n-m$ free parameters
- define $y^T = [x_1, x_2, ..., x_m]$ as m state variables and $u^T = [x_{m+1}, x_{m+2}, ..., x_n]$ as $n-m$ control (or decision) variables (the choice is usually not unique)
- obtain admissible variations dy as a function of du from $[G_y]dy + [G_u]du = 0$
- first order expansion $\phi(u + du) = \phi(u) + g_y^T dy + g_u^T du$
- $[G_y] = \partial c/\partial y$, $[G_u] = \partial c/\partial u$, $g_y^T = \partial \phi/\partial y$, $g_u^T = \partial \phi/\partial u$
- ϕ is maximum if $d\phi \leq 0$ for any choice of du
- necessary condition for a stationary point $-g_y^T [G_y]^{-1} [G_u] + g_u^T = 0$
Equality Constrained Optimization (4)

- alternatively, maximize the augmented function
 \[\phi^* = \phi(x) + \lambda^T c \] (\(\lambda \) is a \(m \)-component vector of adjoint parameters to be determined)

- \(\phi \) and \(\phi^* \) coincide for any choice of \(\lambda \) if the constraints are verified

- second-order Taylor’s expansion of \(\phi^* \) (local maxima are sought)
 \[\phi^*(x + dx) = \phi^*(x) + (g^T + \lambda^T [G])dx + \frac{1}{2} dx^T [H^*] dx \]

- augmented Hessian \([H^*] = [H] + \partial[\partial(\lambda^T c/\partial x)^T] \partial x \), that is
 \[H^*_{ij} = H_{ij} + \sum_{k=1}^{m} \lambda_k \frac{\partial^2 c_k}{\partial x_i \partial x_j} \]
Equality Constrained Optimization (5)

- λ can be chosen to nullify the first variation of ϕ^* for any choice of dx (also those that do not satisfy $c = 0$)

- First-order necessary condition for maximum ϕ is $g^T + \lambda^T [G] = 0$, that is, $g + [G]^T \lambda = 0$ (n conditions), and $c = 0$ (m conditions) for $n + m$ unknowns x and λ

- Second-order necessary condition for a maximum $dx^T [H^*] dx < 0$ for any admissible dx ($[H^*]$ is not required to be negative semidefinite)

- Sufficient conditions for a maximum $g^T + \lambda^T [G] = 0$ and $dx^T [H^*] dx < 0$ for any admissible dx ($[H^*]$ is not required to be negative definite)
Equality Constrained Optimization (6)

- $g + [G]^T \lambda = 0$ relates the gradient of ϕ to the gradients of the constraints.
- With only one constraint ($m = 1$), $\frac{\partial \phi}{\partial x} = -\lambda \frac{\partial c}{\partial x}$, that is, the gradient of ϕ must be parallel to the gradient of c.
- Since the gradient of c is perpendicular to the constraint $c = 0$, this means that the gradient of ϕ must be perpendicular to $c = 0$.
- For more than one constraint ($m \geq 2$), the gradient of ϕ must be a linear combination of the constraints gradients.
Equality Constrained Optimization - Example

- \(\phi = -x_1^2 - x_2^2, \ c = x_1 + x_2 - 1 = 0 \ (n = 2, \ m = 1) \)
 \[
 \phi^* = -x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1) \\
 g^T = [-2x_1, -2x_2], \ [G] = (1, 1), \\
 g^T + \lambda^T[G] = (-2x_1 + \lambda, -2x_2 + \lambda) \\
 \]
 stationary point requires \(-2x_1 + \lambda = 0, -2x_2 + \lambda = 0, \ x_1 + x_2 - 1 = 0, \) that is \(x_1 = x_2 = 1/2\) and \(\lambda = 1\)

- \([H^*] = [H] = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}\), admissible variation is
 \[
 (dx)^T = (-a, a) \\
 dx^T[H^*]dx = -4a^2 < 0 \text{ therefore } x^T = (1/2, 1/2) \text{ is a maximum (in this case, } [H^*] \text{ is negative definite and } dx^T[H^*]dx < 0 \text{ for any } dx)\]
Indirect Optimization Methods

Optimization of discrete systems

Inequality Constrained Optimization (1)

- maximize $\phi(x)$ (x is a n-component vector of variables) with $c(x) \geq 0$ (c is a m-component vector of constraints, $c^T = [c_1, c_2, ..., c_m]$, m may be larger than n)
- feasible points are those which satisfy $c(x) \geq 0$
- ϕ is maximum if $d\phi \leq 0$ for any admissible (i.e., that verifies $c(x + dx) \geq 0$) choice of dx
- at a feasible point a constraint may be inactive ($c_j > 0$) and can be neglected or active ($c_j = 0$) and can be (at least, initially) treated as an equality constraint
- at a feasible point admissible variations require $dc_a \geq 0$ (c_a only contains the active constraints, m_a components)
Inequality Constrained Optimization (2)

- main issue: determine the active set of constraints
- for a given active set, an equality constrained optimization problem must be solved
 - if the solution violates an inactive constraint, the constraint must be added to the active set and an augmented equality constrained problem must be solved
 - if the solution is feasible, the requirement of the active constraints must be checked and unnecessary constraints must be removed producing a reduced-dimension problem
Indirect Optimization Methods

Inequality Constrained Optimization (3)

- given the active set solve the equality constrained optimization
- maximize the augmented function \(\phi^* = \phi(x) + \lambda_a^T c_a \) (with \(c_a = 0 \) active set of constraints and \(\lambda_a \) vector of adjoint parameters to be determined, \(m_a \) components)
- \(\phi \) and \(\phi^* \) coincide for any choice of \(\lambda_a \) if the active constraints are verified
- second-order Taylor’s expansion of \(\phi^* \) (local maxima are sought)
 \[
 \phi^*(x + dx) = \phi^*(x) + (g^T + \lambda_a^T [G_a])dx + \frac{1}{2}dx^T[H^*]dx
 \]
- augmented Hessian \([H^*] = [H] + \partial[\partial(\lambda_a^T c_a/\partial x)^T]\partial x\), that is
 \[
 H^*_{ij} = H_{ij} + \sum_{k=1}^{m} \lambda_{ak} \frac{\partial^2 c_{ak}}{\partial x_i \partial x_j}
 \]
Inequality Constrained Optimization (4)

- for the equality constrained optimization given the active set
 - \(\lambda_a \) can be chosen to nullify the first variation of \(\phi^* \) for any choice of \(dx \)
 - first-order necessary condition \(g^T + \lambda_a^T [G_a] = 0 \), that is, \(g + [G_a]^T \lambda_a = 0 \) (\(n \) conditions) and \(c_a = 0 \) (\(m_a \) conditions) for \(n + m_a \) unknowns \(x \) and \(\lambda_a \)
 - second-order necessary condition for a maximum \(dx^T [H^*] dx \leq 0 \) for any admissible \(dx \) (\([H^*]\) is not required to be negative semidefinite)
 - \(dx^T [H^*] dx < 0 \) for any admissible \(dx \) is a sufficient condition
Indirect Optimization Methods
Optimization of discrete systems

Inequality Constrained Optimization (5)

- at a feasible stationary point \((d\phi^* = 0) \) of the equality constrained problem \((c_a = 0) \), admissible variations of the inequality constrained problem require \(dc_a \geq 0 \)
- \(d\phi = d\phi^* - \lambda_a^T dc_a \) and at a maximum \((d\phi \leq 0) \) \(\lambda_a^T dc_a \geq 0 \) is required for any admissible \(dc_a \)
- this implies that all the components of \(\lambda_a \) must be positive
- the constraint \(c_j = 0 \) must be removed from the active set when \(\lambda_{aj} < 0 \)
- generalizing, necessary conditions are \(c \geq 0, g + [G]^T \lambda = 0, \lambda_j \geq 0 \) when \(c_j = 0, \lambda_j = 0 \) when \(c_j > 0 \), \(dx^T[H^*]dx \leq 0 \) for any admissible (with respect to the active constraints) \(dx \)
- if \(dx^T[H^*]dx < 0 \) for any admissible \(dx \) is enforced, a set of sufficient conditions is obtained
Indirect Optimization Methods

Optimization of discrete systems

Inequality Constrained Optimization (6)

- $g + [G]^T \lambda = 0$ relates the gradient of ϕ to the gradients of the constraints
- with only one constraint ($m = 1$) $\frac{\partial \phi}{\partial x} = -\lambda \frac{\partial c}{\partial x}$, that is, the gradient of ϕ must be parallel and opposite ($-\lambda \leq 0$) to the gradient of c
- since the gradient of c is perpendicular the constraint $c = 0$, this means that the gradient of ϕ must be perpendicular to $c = 0$ pointing toward constraint violation
- for more than one constraint ($m \geq 2$), the gradient of ϕ must be a negative linear combination of the constraints gradients
- $- \lambda_i$ represents the change in ϕ for a unit change in c_i (assuming a linear approximation)
Indirect Optimization Methods
Optimization of discrete systems

Inequality Constrained Optimization (7)

• a strict equality constraint $c_i = 0$ requires the simultaneous fulfillment of both $c_i \geq 0$ and $-c_i \geq 0$ and therefore, at a feasible point, an equality constraint is always active

• $\lambda_i > 0$ indicates that at a maximum ($d\phi < 0$) admissible dc_i must be positive, i.e., $c_i \geq 0$ is active (the index would be increased for $c_i < 0$)

• $\lambda_i < 0$ indicates that at a maximum ($d\phi < 0$) admissible dc_i must be negative, i.e., $c_i \leq 0$ is active (the index would be increased for $c_i > 0$)
Inequality Constrained Optimization

Examples (1)

- $\phi = -x_1^2 - x_2^2$, $c = x_1 + x_2 - 1 \geq 0$
- Assume c being active, define $\phi^* = -x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1)$
- Stationary point requires $-2x_1 + \lambda = 0$, $-2x_2 + \lambda = 0$, $x_1 + x_2 - 1 = 0$, that is $x_1 = x_2 = 1/2$ and $\lambda = 1$
- $x^T = (1/2, 1/2)$ is a maximum as $\lambda > 0$ and, for admissible variations $dx^T = (-a, a)$, $dx^T[H]^*dx = -a^2 < 0$
Inequality Constrained Optimization

Examples (2)

• \(\phi = -x_1^2 - x_2^2 \), \(x_1 + x_2 - 1 \leq 0 \), that is, \(c = -x_1 - x_2 + 1 \geq 0 \)

• assume \(c \) being active, define
 \[
 \phi^* = -x_1^2 - x_2^2 + \lambda(-x_1 - x_2 + 1)
 \]

• stationary point requires \(-2x_1 - \lambda = 0, -2x_2 - \lambda = 0, x_1 + x_2 - 1 = 0 \)
 that is \(x_1 = x_2 = 1/2 \) and \(\lambda = -1 \)

• since \(\lambda < 0 \) the constraint is to be removed and the unconstrained optimization provides \(x^T = (0, 0) \) as the maximum
Example

\[\frac{\partial}{\partial x_1} (x_1 + x_2 > 1) \]

\[\frac{\partial}{\partial x_2} (x_1 + x_2 < 1) \]

\[\phi = -3 \]

\[\phi = 0 \]

\[\phi = 0.5 \]

\[\phi = 1 \]

\[\frac{\partial c}{\partial x} \]

\[g \]

\[x_1, x_2 \]

L. Casalino 2015
Continuous Systems

Summary

- necessary conditions for a stationary solution
- Hamilton-Jacobi-Bellman equation
- necessary and sufficient conditions for optimality
Continuous Systems

• t independent variable
• x state variables (n-component vector)
• u control variables (m-component vector)
• state equations $\dot{x}(t) = \frac{dx}{dt} = f(x, u, t)$ (n-component vector of differential equations)
• boundary conditions $\psi(x_0, x_f, t_0, t_f) = 0$ (q-component vector of algebraic equations, $q \leq n + 2$)
Bolza Problem

- determine the *extremal path* \(x(t) \) and the corresponding optimal control law \(u(t) \) satisfying
 - differential equations \(\dot{x}(t) = f(x, u, t) \)
 - boundary conditions \(\psi(x_0, x_f, t_0, t_f) = 0 \)

To maximize (or minimize)
\[
J = \phi(x_0, x_f, t_0, t_f) + \int_{t_0}^{t_f} \Phi(x, \dot{x}, t)dt
\]

- Meyer's formulation \(J = \phi(x_0, x_f, t_0, t_f) \) and \(\Phi = 0 \)
- Lagrange's formulation \(J = \int_{t_0}^{t_f} \Phi(x, \dot{x}, t)dt \) and \(\phi = 0 \)
- calculus of variations studies the behavior of functionals \(J \)
- optimal control theory applies CoV to the maximization or minimization of functionals
Equivalence of Formulations

- Lagrange’s formulation can be reduced to Meyer’s formulation by introducing the new state variable x' with $\dot{x}' = \Phi$, $x'_0 = 0$ and $\phi = x'_f$

- Meyer’s formulation can be reduced to Lagrange’s formulation if $\phi = \phi(x_f, t_f)$ observing that

$$\phi(x_f, t_f) = \int_{t_0}^{t_f} [(\partial \phi / \partial x_f) \dot{x} + \partial \phi / \partial t_f] dt$$

or by opportunely introducing additional variables in the general case

- minimization can be turned into maximization by changing the sign of ϕ and Φ

- the maximization problem is here considered
Adjoint Variables

- Adjoint variables \(\lambda \) (\(n \)-component vector) and constants \(\mu \) (\(q \)-component vector)
- Augmented index \(J^* = \phi + \mu^T \psi + \int_{t_0}^{t_f} [\Phi + \lambda^T (f - \dot{x})] dt \)
- \(J^* = J \) for any choice of \(\lambda \) and \(\mu \) if state equations and boundary conditions are satisfied
Index Variation (1)

• using a first-order expansion of J^* one has

$$
\begin{align*}
\frac{dJ^*}{dt} &= \left(\frac{\partial \varphi}{\partial t_f} + \mu^T \frac{\partial \psi}{\partial t_f} + \Phi_f + \lambda_f^T (f_f - \dot{x}_f) \right) dt_f + \\
&+ \left(\frac{\partial \varphi}{\partial t_0} + \mu^T \frac{\partial \psi}{\partial t_0} - \Phi_0 - \lambda_0^T (f_0 - \dot{x}_0) \right) dt_0 + \\
&+ \left(\frac{\partial \varphi}{\partial x_f} + \mu^T \frac{\partial \psi}{\partial x_f} \right) dx_f + \left(\frac{\partial \varphi}{\partial x_0} + \mu^T \frac{\partial \psi}{\partial x_0} \right) dx_0 + \\
&+ \int_{t_0}^{t_f} \left[\frac{\partial (\Phi + \lambda^T f)}{\partial \delta x} + \frac{\partial (\Phi + \lambda^T f)}{\partial \delta u} \right] dt
\end{align*}
$$
Index Variation (2)

- at a given (constant) time the variable variation is δx
- at the initial (or final) point the total variation $dx = \delta x + \dot{x}dt$ is the sum of variation at constant t, i.e., δx, and variation due to initial (or final) time variation $\dot{x}dt = f dt$
- the Hamiltonian is introduced $H = \Phi + \lambda^T f$
- term in $\delta \dot{x}$ is integrated by parts

$$\int_{t_0}^{t_f} -\lambda^T \delta \dot{x} dt = -\lambda_f^T \delta x_f + \lambda_0^T \delta x_0 + \int_{t_0}^{t_f} \dot{\lambda}^T \delta x dt$$
Index Variation (3)
Index Variation (4)

\[
dJ^* = \left(\frac{\partial \varphi}{\partial t_f} + \mu^T \frac{\partial \psi}{\partial t_f} + H_f \right) dt_f + \\
+ \left(\frac{\partial \varphi}{\partial t_0} + \mu^T \frac{\partial \psi}{\partial t_0} - H_0 \right) dt_0 + \\
+ \left(-\lambda_f^T + \frac{\partial \varphi}{\partial x_f} + \mu^T \frac{\partial \psi}{\partial x_f} \right) dx_f + \\
+ \left(\lambda_0^T + \frac{\partial \varphi}{\partial x_0} + \mu^T \frac{\partial \psi}{\partial x_0} \right) dx_0 + \\
+ \int_{t_0}^{t_f} \left[\left(\frac{\partial H}{\partial \delta x} + \lambda^T \right) \delta x + \frac{\partial H}{\partial \delta u} \delta u \right] dt
\]
Stationary Point

• necessary condition for J being stationary is $dJ = 0$ for any admissible choice of δx, δu, dx_f, dx_0, dt_f, dt_0 (that is, differential equations and boundary conditions must be satisfied)

• λ and μ can be chosen to nullify dJ^* for any choice of δx, δu, dx_f, dx_0, dt_f, dt_0 by nullifying their multiplying coefficients in dJ^*

• since J and J^* coincide when the constraints are satisfied, $dJ^* = 0$ for any variation implies $dJ = 0$ for any admissible variation
Equations for Adjoint and Control Variables

• Euler-Lagrange equations (n differential equations for the adjoint variables)

$$\frac{d\lambda}{dt} = - \left(\frac{\partial H}{\partial x} \right)^T$$

• optimal control equations (m algebraic equations for the control variables)

$$\left(\frac{\partial H}{\partial u} \right)^T = 0$$

• the control equations do not formally depend on the performance index
Boundary Conditions for Optimality

- boundary conditions for optimality ($n + n$ algebraic equations at initial and final point)
 \[
 \lambda_0^T + \frac{\partial \varphi}{\partial x_0} + \mu^T \frac{\partial \psi}{\partial x_0} = 0 \quad -\lambda_f^T + \frac{\partial \varphi}{\partial x_f} + \mu^T \frac{\partial \psi}{\partial x_f} = 0
 \]

- transversality conditions ($1 + 1$ algebraic equations at initial and final time)
 \[
 -H_0 + \frac{\partial \varphi}{\partial t_0} + \mu^T \frac{\partial \psi}{\partial t_0} = 0 \quad H_f + \frac{\partial \varphi}{\partial t_f} + \mu^T \frac{\partial \psi}{\partial t_f} = 0
 \]

- with the imposed boundary conditions $\psi = 0$ (q equations) one has $2n + q + 2$ equations which implicitly determine q adjoint constants (μ), 2 times (t_0 and t_f) and the initial values for $2n$ differential equations (for x and λ)
Hamiltonian Time-Derivative

- \[\frac{dH}{dt} = \frac{\partial H}{\partial t} + \frac{\partial H}{\partial x} \dot{x} + \frac{\partial H}{\partial \lambda} \dot{\lambda} + \frac{\partial H}{\partial u} \dot{u} \]

- one has \((\frac{\partial H}{\partial \lambda})^T = f = \dot{x}, \dot{\lambda} = - (\frac{\partial H}{\partial x})^T \)

- therefore \(\frac{dH}{dt} = \frac{\partial H}{\partial t} + \frac{\partial H}{\partial u} \dot{u} \)

- when \(H \) does not depend explicitly on time \((\frac{\partial H}{\partial t} = 0) \) and the optimal control law is adopted \((\frac{\partial H}{\partial u} = 0) \), the Hamiltonian is constant
Simple Boundary Conditions on State Variables

- variable assigned at t_0, $(x_i)_0 - a_i = 0 \Rightarrow (\lambda_i)_0 + \mu = 0$, that is, the corresponding adjoint variable is free
- variable assigned at t_f, $(x_i)_f - b_i = 0 \Rightarrow - (\lambda_i)_f + \mu = 0$, that is, the corresponding adjoint variable is free
- one can consider $d(x_i)_0 = 0$ (or $d(x_i)_f = 0$) and drop the equation obtained by nullifying its coefficient
- variable free at t_0 and $\partial \phi / \partial (x_i)_0 = 0 \Rightarrow (\lambda_i)_0 = 0$, that is, the corresponding adjoint variable is null
- variable free at t_f and $\partial \phi / \partial (x_i)_f = 0 \Rightarrow (\lambda_i)_f = 0$, that is, the corresponding adjoint variable is null
Simple Boundary Conditions on Time

- initial time assigned $t_0 - t_a = 0 \Rightarrow -H_0 + \mu = 0$, that is, the corresponding Hamiltonian is free
- final time assigned $t_f - t_b = 0 \Rightarrow H_f + \mu = 0$, that is, the corresponding Hamiltonian is free
- one can consider $dt_0 = 0$ (or $dt_f = 0$) and drop the equation obtained by nullifying its coefficient
- initial time free and $\partial\phi/\partial t_0 = 0 \Rightarrow H_0 = 0$, that is, the corresponding Hamiltonian is null
- final time free and $\partial\phi/\partial t_f = 0 \Rightarrow H_f = 0$, that is, the corresponding Hamiltonian is null
Initial State Specified - No Terminal Constraints

Fixed Terminal Time (1)

- \(x_0 = a, \ t_0 = t_a, \ t_f = t_b \)
- \(\phi \) can be regarded as a function of \(x_f \) only, i.e., \(\phi = \phi(x_f) \)
- \(H_0, \ H_f \) and \(\lambda_0 \) are free as \(\delta x_0 = 0, \ \delta t_0 = 0 \) and \(\delta t_f = 0 \)
- optimality conditions provide \(\lambda_f = \left(\frac{\partial \phi}{\partial x_f} \right)^T \) producing a two-point boundary value problem
- initial values \(\lambda_0 \) are free and must be determined to satisfy the optimality conditions at the final point
Indirect Optimization Methods
Continuous systems - CoV

Initial State Specified - No Terminal Constraints

Fixed Terminal Time (2)

- for Euler-Lagrange equations and optimality conditions satisfied (i.e., on an extremal path) non-admissible variations provide

\[dJ = \lambda_0^T dx_0 - H dt_0 + \int_{t_0}^{tf} \frac{\partial H}{\partial u} \delta u dt \]

- \(\lambda_0 \) is the gradient of \(J \) with respect to changes in \(x_0 \) (influence functions)

\[\lambda_0 = (\partial J/\partial x_0)^T \]

- \(-H_0 \) is the gradient of \(J \) with respect to changes in \(t_0 \) (time influence function)

\[-H_0 = \partial J/\partial t_0 \]

- \(\frac{\partial H}{\partial u} \) represents the change in \(J \) for a unit impulse \(\delta u \) (impulse response functions, must be null on an extremal path)
State Variables Specified at Fixed Final Time

State Variables Unspecified at Fixed Initial Time

- \((x_i)_f = b_i\) replaces \((\lambda_i)_f = \frac{\partial \phi}{\partial (x_i)_f}\)
- similarly, if \((x_i)_0\) is free, \((\lambda_i)_0 = 0\) replaces \((x_i)_0 = a_i\) (\(\phi\) is assumed to be a function of \(x_f\) only)
- the change in \(J\) with respect to a unit change in \((x_i)_0\), i.e., \((\lambda_i)_0\), must be null at the optimal initial point if \((x_i)_0\) is free
- if \(\partial \phi / \partial (x_i)_0 \neq 0\) then \(dJ/d(x_i)_0 = \partial \phi / \partial (x_i)_0 + (\lambda_i)_0 = 0\) must be enforced
Unspecified Initial and Final Time

- $t_0 = t_a$ and $t_0 = t_b$ are dropped from ψ
- the transversality conditions provide the initial and final time

$$-H_0 + \frac{\partial \varphi}{\partial t_0} + \mu^T \frac{\partial \psi}{\partial t_0} = 0$$

$$H_f + \frac{\partial \varphi}{\partial t_f} + \mu^T \frac{\partial \psi}{\partial t_f} = 0$$
Equality Path Constraints

• \[\int_{t_0}^{t_f} N(x, u, t) dt = k_b \]

• introduce a new variable \(x_{n+1} \) with differential equation
 \[\dot{x}_{n+1} = N \]
 and boundary conditions \((x_{n+1})_0 = 0, \)
 \((x_{n+1})_f = k_b \)
Equality Constraints on Control Variables

• $C(u, t) = 0$ (only for $m \geq 2$)

• two options
 – eliminate one control variable u_j from $C(u, t) = 0$ and consider the unconstrained problem with m reduced by one
 – use augmented Hamiltonian $H = \Phi + \lambda^T f + \lambda' C$ and derive E-L equations, controls and boundary conditions consequently
Equality Constraints on State and Control Variables

- \(C(x, u, t) = 0 \)
- same approach as before, two options
 - eliminate one control variable \(u_j \) from \(C(x, u, t) = 0 \) and consider the unconstrained problem with \(m \) reduced by one
 - use augmented Hamiltonian \(H = \Phi + \lambda^T f + \lambda' C \) and derive E-L equations, controls and boundary conditions consequently
- one of the state variables can alternatively be eliminated
Equality Constraints on Function of State Variables

- \(S(x, t) = 0 \)
- since \(S \) must be constant \(\dot{S} = \frac{\partial S}{\partial x} \dot{x} + \frac{\partial S}{\partial t} = 0 \)
- if \(\dot{S} \) depends on \(u \) eliminate one control variable \(u_j \) from \(\dot{S} = 0 \) and consider the unconstrained problem with \(m \) reduced by one
- if \(\dot{S} \) is independent of \(u \) either
 - eliminate one state variable \(x_j \) from \(\dot{S} = 0 \) and consider the unconstrained problem with \(n \) reduced by one
 - compute subsequent time derivatives until \(u \) appears
Interior Point Constraints (1)

- functions of state variables specified or variables discontinuities at interior point (time may or may not be specified)
- split the integration into \(f \) intervals at the relevant \(f - 1 \) intermediate points
- the \(j \)-th interval spans from \(t_{(j-1)+} \) to \(t_{(j)-} \), the variable values at the extremities are \(x_{(j-1)+} \) and \(x_{(j)-} \), respectively, \(j = 1, f \)
Interior Point Constraints (2)

• define the performance index J

$$J = \phi(x_0, x_{1\pm}, ..., x_f, t_0, t_{1\pm}, ..., t_f) + \sum_{j=i}^{f} \int_{t_{(j-1)+}}^{t_{(j)-}} \Phi(x, \dot{x}, t) dt$$

• add conditions at intermediate points and build

$$\psi = \psi(x_{(j-1)+}, x_{(j)-}, t_{(j-1)+}, t_{(j)-}), j = 1, ..., f$$

• define the augmented performance index J^*

$$J^* = \phi + \mu^T \psi + \sum_{j=i}^{f} \int_{t_{(j-1)+}}^{t_{(j)-}} \Phi + \lambda^T (f - \dot{x}) dt$$

and derive Euler-Lagrange and control equations, and boundary conditions for optimality.
Interior Point Constraints (3)

- boundary conditions for optimality \((j = 1, f)\)

\[
\lambda_T^{(j-1)+} + \frac{\partial \phi}{\partial x_{(j-1)+}} + \mu_T \frac{\partial \psi}{\partial x_{(j-1)+}} = 0 \text{ (start of phase } j) \\
-\lambda_T^{(j)-} + \frac{\partial \phi}{\partial x_{(j)-}} + \mu_T \frac{\partial \psi}{\partial x_{(j)-}} = 0 \text{ (end of phase } j)
\]

- transversality conditions \((j = 1, f)\)

\[
-H_{(j-1)+} + \frac{\partial \phi}{\partial t_{(j-1)+}} + \mu_T \frac{\partial \psi}{\partial t_{(j-1)+}} = 0 \text{ (start of phase } j) \\
H_{(j)-} + \frac{\partial \phi}{\partial t_{(j)-}} + \mu_T \frac{\partial \psi}{\partial t_{(j)-}} = 0 \text{ (end of phase } j)
\]

- a multipoint boundary value problem must be solved
Interior Point Constraints (4)

- at a generic point j (end of phase j, start of phase $j+1$)

$$
\lambda^T_{j+} + \frac{\partial \varphi}{\partial x_{j+}} + \mu^T \frac{\partial \psi}{\partial x_{j+}} = 0, \ j = 0, \ldots, f - 1
$$

$$
-\lambda^T_{j-} + \frac{\partial \varphi}{\partial x_{j-}} + \mu^T \frac{\partial \psi}{\partial x_{j-}} = 0, \ j = 1, \ldots, f
$$

$$
-H_{j+} + \frac{\partial \varphi}{\partial t_{j+}} + \mu^T \frac{\partial \psi}{\partial t_{j+}} = 0, \ j = 0, \ldots, f - 1
$$

$$
H_{j-} + \frac{\partial \varphi}{\partial t_{j-}} + \mu^T \frac{\partial \psi}{\partial t_{j-}} = 0, \ j = 1, \ldots, f
$$
Interior Point Constraints (5)

- variable continuous and specified at intermediate time t_j,

 \[
 (x_i)_{j+} - c_i = 0, \quad (x_i)_{j-} - c_i = 0, \quad \phi \text{ independent of } (x_i)_{j+} \text{ and } (x_i)_{j-} \Rightarrow (\lambda_i)_{j+} - (\lambda_i)_{j-} = -(\mu_1 + \mu_2), \]

 the corresponding adjoint variable has a free discontinuity

- variable continuous but unspecified at intermediate time t_j,

 \[
 (x_i)_{j+} - (x_i)_{j-} = 0, \quad \phi \text{ independent of } (x_i)_{j+} \text{ and } (x_i)_{j-} \Rightarrow (\lambda_i)_{j+} + \mu = 0 \text{ and } -(\lambda_i)_{j-} - \mu = 0, \]

 the corresponding adjoint variable is continuous $$(\lambda_i)_{j+} = (\lambda_i)_{j-}$$
Interior Point Constraints (6)

• intermediate time fixed (and continuous), \(t_{j^+} - t_c = 0, \ t_{j^-} - t_c = 0 \), \(\phi \) independent of \(t_{j^+} \) and \(t_{j^-} \) ⇒ \(-H_{j^+} + \mu_1 = 0, \ H_{j^-} + \mu_2 = 0\), the Hamiltonian has a free discontinuity

• intermediate time free and continuous, \(t_{j^+} - t_{j^-} = 0 \), \(\phi \) independent of \(t_{j^+} \) and \(t_{j^-} \) ⇒ \(-H_{j^+} + \mu = 0, \ H_{j^-} - \mu = 0\), the Hamiltonian is continuous \(H_{j^+} = H_{j^-} \)
Inequality Constraints

- $C(x, u, t) \geq 0$
- assume the constraint being active $C(x, u, t) = 0$
- define augmented Hamiltonian $H = \Phi + \lambda^T f + \lambda'C$ and solve the equality constrained problem
 - $\lambda' \geq 0$ is required when $C = 0$ (active constraint)
 - $\lambda' = 0$ is required when $C > 0$ (inactive constraint)
- constraint to be removed if $\lambda' < 0$
- main issue: determine the constrained interval(s)
Hamilton-Jacobi-Bellman Equations (1)

- for a given initial point \(x_0, t_0 \) and final constraints \(\psi(x_f, t_f) = 0 \) the optimal path provides the maximum index \(J = J^o \) with control variables \(u^o(t) \) (unicity of the optimal path is here supposed)

- Hamilton-Jacobi theory provides differential equations concerning \(J^o \) and the optimal control \(u^o \), extended by Bellman to discrete systems (dynamic programming)

- any point \(x, t \) on the optimal path may be considered as the initial point

- starting from \(x, t \) on the optimal path the maximization of \(J \) provides the same control law \(u^o(t) \)
Hamilton-Jacobi-Bellman Equations (2)

- for a generic starting point x, t, one has
 $$J^o(x, t) = \max \left\{ \phi(x_f, t_f) + \int_t^{t_f} \Phi(x, u, \tau) d\tau \right\}$$
 with boundary condition $J^o(x_f, t_f) = \phi(x_f, t_f)$ on the terminal hypersurface $\psi(x_f, t_f) = 0$
- maximization with respect to u
- assume J^o continuous with continuous first and second derivatives
- if a generic (possibly nonoptimal) control is used from x, t to $x + f(x, u, t) \Delta t, t + \Delta t$, and then the optimal control is used up to the final point, the performance index will be
 $$J'(x, t) = \Phi(x, u, t) \Delta t + J^o[x + f(x, u, t) \Delta t, t + \Delta t]$$
Hamilton-Jacobi-Bellman Equations (3)
H **Hamilton-Jacobi-Bellman Equations** (4)

- \(J' = J^o \) only if the optimal control is used from \(t \) to \(t + \Delta t \), that is,
 \[
 J^o(x, t) = \max \{ J^o[x + f(x, u, t)\Delta t, t + \Delta t] + \Phi(x, u, t)\Delta t \}
 \]

- first order expansion provides \(J^o(x, t) = \)
 \[
 \max \left\{ J^o(x, t) + \frac{\partial J^o}{\partial x} f(x, u, t)\Delta t + \frac{\partial J^o}{\partial t} \Delta t + \Phi(x, u, t)\Delta t \right\}
 \]

- for \(\Delta t \to 0 \) and considering that \(J^o \) and \(\partial J^o / \partial t \) do not depend on \(u \) one has
 \[
 -\frac{\partial J^o}{\partial t} = \max \left\{ \frac{\partial J^o}{\partial x} f(x, u, t) + \Phi(x, u, t) \right\}
 \]
Hamilton-Jacobi-Bellman Equations (5)

- according to the definition of influence functions
 \[dJ^o = \lambda^T \delta x - H \delta t \]
- therefore
 \[\frac{\partial J^o}{\partial x} = \lambda^T \quad \frac{\partial J^o}{\partial t} = -H \]
 and
 \[\phi + \frac{\partial J^o}{\partial x} f = \phi + \lambda^T f = H \]
- comparison provides the Hamilton-Jacobi-Bellman equation
 \[-\frac{\partial J^o}{\partial t} = H^o \left(x, \frac{\partial J^o}{\partial x}, t \right) \]
 \[H^o \left(x, \frac{\partial J^o}{\partial x}, t \right) = \max \left\{ H \left(x, \frac{\partial J^o}{\partial x}, u, t \right) \right\} = \max \left\{ H \left(x, \lambda, u, t \right) \right\} \]
- maximization with respect to \(u \) given \(x, \lambda, \) and \(t \)
Hamilton-Jacobi-Bellman Equations (6)

• HJB equation state that the optimal controls must maximize the Hamiltonian over the whole set of admissible controls (global condition)

• the same results was obtained independently by Pontryagin and is known as Pontryagin’s maximum principle (PMP)

• in the absence of bounds on state and control variables, HJB implies $H_u = 0$ and H_{uu} negative definite (local conditions)

• HJB also implies that Euler-Lagrange equations and the boundary conditions for optimality must be verified
Hamilton-Jacobi-Bellman Equations (7)

- for any final point x_f, t_f satisfying $\psi(x_f, t_f) = 0$ ($n + 1$ variables, $q \leq n + 1$ conditions), backward integration of HJB equation for any choice of λ_f, μ satisfying the boundary conditions for optimality and transversality condition at the final point ($n + q$ variables, $n + 1$ conditions) provides all the possible optimal paths and the corresponding control laws (*field of extremals*).

- in general, only one optimal path will pass through a given point x, t and a unique optimal control $u^0(x, t)$ will be associated with each point (*optimal feedback control law*).

- main issue: *curse of dimensionality* - there are n free parameters and it is very difficult to find and store all the possible solutions.
Bang-Bang Controls (1)

- if H is linear with respect to a control variable u_j then $\frac{\partial H}{\partial u_j} = 0$ does not contain u_j (indeterminate)
- HJB equation or PMP show that the control value which maximizes H must be adopted
- the problem has sense only if u_j is bounded
 \[(u_j)_{\text{min}} \leq u_j \leq (u_j)_{\text{max}}\]
- the switching function $S_F = \frac{\partial H}{\partial u_j}$ is introduced
 - $u_j = (u_j)_{\text{max}}$ when $S_F > 0$
 - $u_j = (u_j)_{\text{min}}$ when $S_F < 0$
 - singular arc when $S_F = 0$ over a finite interval (u_j obtained by nullifying the subsequent time derivatives of S_F)
Bang-Bang Controls (2)

\[S_F < 0 \quad \text{for} \quad u = u_{\text{min}} \]

\[S_F > 0 \quad \text{for} \quad u = u_{\text{max}} \]
Necessary Conditions for a Maximum (1)

- Stationary feasible point: state and Euler-Lagrange equations verified for $t_0 \leq t \leq t_f$, imposed conditions and necessary conditions for optimality verified at initial, final, and intermediate points.

- Weierstrass condition: H maximized by the optimal controls (global maximum) for $t_0 \leq t \leq t_f$.

- For a local maximum Weierstrass condition is replaced by $\partial H/\partial u = 0$ and Legendre-Clebsch condition H_{uu} negative semidefinite (usually, a minimization problem is considered and H_{uu} positive semidefinite is imposed, convexity condition).
Necessary Conditions for a Maximum (2)

- normality condition: \hat{Q} positive semidefinite, $\alpha \leq 0$ for $t_0 \leq t < t_f$
- Jacobi condition: $\hat{S} - \hat{R}\hat{Q}^{-1}\hat{R}^T$ finite for $t_0 < t < t_f$, that is, no conjugate points exist on the path (if the matrix becomes infinity some δx must be restricted and no maximization is possible as infinite equivalent solutions exist)
- Riccati equation $\dot{S} = -C - A^TS - SA + SBS = -Sf_x - f_x^TS - H_{xx} + (Sf_u + H_{ux}^T)H_{uu}^{-1}(H_{ux} + f_u^TS)$
 $\dot{R} = -(A^T - SB)R$ and $\dot{Q} = R^TBR$
 $\dot{m} = -(A^T - SB)m$ $\dot{n} = R^T B n$ $\dot{\alpha} = m^T B m$
- with $A = f_x - f_u H_{uu}^{-1} H_{ux}$, $B = f_u H_{uu}^{-1} f_u^T$, $C = H_{xx} - H_{xu} H_{uu}^{-1} H_{ux}$
Sufficient Conditions for a Maximum (1)

- Stationary feasible point: state and Euler-Lagrange equations verified for \(t_0 \leq t \leq t_f \), imposed and necessary conditions for optimality verified at initial final and intermediate points.

- Weierstrass condition: \(H \) maximized by the optimal controls (global maximum) for \(t_0 \leq t \leq t_f \).

- For a local maximum, Weierstrass condition is replaced by \(\partial H/\partial u = 0 \) and strengthened Legendre-Clebsch condition \(H_{uu} \) negative definite.
Sufficient Conditions for a Maximum (2)

- normality condition: $\hat{\mathcal{Q}}$ positive definite, $\alpha < 0$ for $t_0 \leq t < t_f$
- Jacobi condition: $\hat{\mathcal{S}} - \hat{\mathcal{R}}\hat{\mathcal{Q}}^{-1}\hat{\mathcal{R}}^T$ finite for $t_0 \leq t < t_f$, that is, no conjugate points exist on the path (if the matrix becomes infinity some δx must be restricted and no maximization is possible as infinite equivalent solutions exist)
Practical Approach

• rely on intuition
• check results with perturbed conditions for optimality
Optimization Problem Formulation

- trajectory split into arcs
- homogeneous control law in each arc
- constraints and discontinuities at the arcs boundaries
Boundary Value Problem

• application of the theory of optimal control produces a multipoint boundary value problem (BVP)

• some constants (e.g., relevant times) and the initial values of some of the state and adjoint variables are unknown

• boundary conditions at the relevant points must be satisfied

• an iterative procedure based on Newton’s method can be adopted
BVP Formulation (1)

- t independent variable
- x state variables $\frac{dx}{dt} = f$
- λ adjoint variables $\frac{d\lambda}{dt} = - (\frac{\partial H}{\partial x})^T$
- u control variables obtained as functions of x and λ by maximizing the Hamiltonian
- boundary conditions concerning x, λ and t at initial, final and intermediate points
BVP Formulation (2)

- independent variable transformation: in the j-th arc
 \[\varepsilon = j - 1 + \frac{t - t_{j-1}}{t_j - t_{j-1}} = j - 1 + \frac{t - t_{j-1}}{\tau_j} \]
- in the j-th arc ε varies between $j - 1$ and j
- $\frac{dx}{d\varepsilon} = \tau_j \frac{dx}{dt}$
- $\frac{d\lambda}{d\varepsilon} = \tau_j \frac{d\lambda}{dt}$
- the relevant times or arc time-lengths are additional constant parameters
- constant parameters y with equation $\frac{dy}{d\varepsilon} = 0$
BVP Formulation (3)

- define vector of unknowns
 \[z = \begin{pmatrix} x \\ \lambda \\ y \end{pmatrix} \]
- differential equations \(\partial z / \partial \epsilon = g(z, \epsilon) \)
- collect values at relevant boundaries
 \[s = (z_{0+}, z_{1\pm}, \ldots, z_{(f-1)\pm}, z_{f-}) \]
- boundary conditions in the form \(\Psi(s) = 0 \)
- assume initial tentative values \(z_0 = p \)
- Newton’s method to reduce the error on boundary conditions
BVP Solution (1)

- at the r-th iteration correct the initial values

 \[p^{r+1} = p^r + \Delta p \quad \text{with} \quad \Delta p = p^{r+1} - p^r = -[\partial \Psi / \partial p]^{-1} \Psi^r \]

- \([\partial \Psi / \partial p] = [\partial \Psi / \partial s] [\partial s / \partial p] \]
- \([\partial \Psi / \partial s]\) by derivation
- \([\partial s / \partial p]\) collects values at the boundaries of \([\partial z / \partial p]\)
- matrix \([\partial z / \partial p]\) by integration of the homogeneous differential system

 \[
 \begin{bmatrix}
 \frac{\partial z}{\partial p} \\
 \frac{\partial^2 z}{\partial p^2}
 \end{bmatrix} = \begin{bmatrix}
 \partial g \\
 \partial z
 \end{bmatrix} \begin{bmatrix}
 \partial z \\
 \partial p
 \end{bmatrix}
 \]
BVP Solution (2)

• the matrix $[\partial \Psi / \partial p]$ can also be obtained numerically
• vary p_i by small quantity δp_i
• integrate equations and compute change of variable values at relevant points δs
• compute change in error on boundary conditions $\delta \Psi$
• approximate by linearization the i-th column of $[\partial \Psi / \partial p]$
 $[\partial \Psi / \partial p_i] = \delta \Psi / \delta p_i$
BVP Solution (3)

- Linearization may introduce errors that can prevent convergence
 - Perform check on error variation and reduce the parameter correction by posing $p^{r+1} = p^r + \Delta p/2$ when $\Psi^{r+1} > K_1 \Psi^r$
 - Use a reduced parameter correction $\Delta p = -K_2 [\partial \Psi / \partial p]^{-1} \Psi^r$ when the errors are large
 - $K_1 = 2$ usually provides good results
 - $0.01 \leq K_2 \leq 1$ usually provides good results (the larger values when the solution is close to the optimal one)
State Equations

- two-body problem with propulsion - vectorial formulation

\[
\frac{dr}{dt} = V
\]
\[
\frac{dV}{dt} = g + \frac{T}{m}
\]
\[
\frac{dm}{dt} = -\frac{T}{c}
\]

- Hamiltonian

\[
H = \lambda_r^T V + \lambda_V^T (g + T/m) - \lambda_m T/c
\]
Euler-Lagrange Equations

- for thrust independent of state variables

\[
\frac{d\lambda_r}{dt} = - \left[\frac{\partial g}{\partial r} \right]^T \lambda_V
\]

\[
\frac{d\lambda_V}{dt} = -\lambda_r
\]

\[
\frac{d\lambda_m}{dt} = \frac{\lambda_V T}{m^2}
\]
Indirect Optimization Methods

Indirect trajectory optimization

Optimal Thrust

• PMP states that the optimal controls must maximize H (given state and adjoint variables)
• thrust direction parallel to the velocity adjoint vector λ_V (also named primer vector), i.e., $T = T\lambda_V/\lambda_V$
• the Hamiltonian becomes
 $H = \lambda_r^T V + \lambda_V^T g + T(\lambda_V/m - \lambda_m/c)$
• maximum thrust T_{max} when the switching function $S_F = \lambda_V/m - \lambda_m/c$ is positive
• minimum thrust (typically, 0) when the switching function $S_F = \lambda_V/m - \lambda_m/c$ is negative
• $S_F = 0$ at the thrust switching points
Spherical Reference Frame

- k: north
- i: zenith
- j: east
- r: ecliptic or equatorial plane
Scalar State Equations

- two-body problem with propulsion

\[
\begin{align*}
\dot{r} &= u \\
\dot{\theta} &= v/(r \cos \phi) \\
\dot{\phi} &= w/r \\
\dot{u} &= -\mu/r^2 + (v^2 + w^2)/r + T \sin \gamma_T/m \\
\dot{v} &= (-uv + vw \tan \phi)/r + T \cos \gamma_T \cos \psi_T/m \\
\dot{w} &= (-uw - v^2 \tan \phi)/r + T \cos \gamma_T \sin \psi_T/m \\
\dot{m} &= -T/c
\end{align*}
\]

- \(H = \lambda_r u + \lambda_\theta v/(r \cos \phi) + \lambda_\phi w/r \\
 + \lambda_u[-\mu/r^2 + (v^2 + w^2)/r + T \sin \gamma_T/m] \\
 + \lambda_v[(-uv + vw \tan \phi)/r + T \cos \gamma_T \cos \psi_T/m] \\
 + \lambda_w[(-uw - v^2 \tan \phi)/r + T \cos \gamma_T \sin \psi_T/m] - \lambda_m T/c \)
Scalar Euler-Lagrange Equations

- thrust independent of state variables (optimal thrust direction is assumed)

\[
\begin{align*}
\dot{\lambda}_r &= \left[\lambda_{\theta} \frac{v}{\cos \phi} + \lambda_{\phi} \right.
\left. w + \lambda_u \left(-\frac{2}{r} + v^2 + w^2 \right) +
\left. \lambda_v \left(-uv + vw \tan \phi \right) + \lambda_w \left(-uw - v^2 \tan \phi \right) \right] / r^2 \\
\dot{\lambda}_{\theta} &= 0 \\
\dot{\lambda}_\phi &= \left(-\lambda_{\theta} \sin \phi - \lambda_v \right.
\left. vw + \lambda_w v^2 \right) / \left(r \cos^2 \phi \right) \\
\dot{\lambda}_u &= \left(-\lambda_r r + \lambda_v u + \lambda_w w \right) / r \\
\dot{\lambda}_v &= \left[-\lambda_{\theta} \frac{1}{\cos \phi} - 2\lambda_u v + \lambda_v \left(u - w \tan \phi \right) + 2\lambda_w v \tan \phi \right] / r \\
\dot{\lambda}_w &= \left(-\lambda_{\phi} - 2\lambda_u w - \lambda_v \tan \phi + \lambda_w u \right) / r \\
\dot{\lambda}_m &= T \lambda_V / m^2
\end{align*}
\]
Thrust Direction

\[i \quad (\text{zenith}) \]

\[j \quad (\text{east}) \]

\[T \]

\[k \quad (\text{north}) \]

\[\gamma_T \]

\[\psi_T \]
Optimal Thrust Angles

- γ_T thrust elevation angle, ψ_T thrust heading angle
- optimal values by posing $\partial H/\partial \gamma_T = 0$ and $\partial H/\partial \psi_T = 0$
- one obtains
 \[
 \lambda_u \cos \gamma_T - (\lambda_v \cos \psi_T + \lambda_w \sin \psi_T) \sin \gamma_T = 0 \\
 -\lambda_v \sin \psi_T + \lambda_w \cos \psi_T = 0
 \]
- these equations provide
 \[
 \sin \gamma_T = \frac{\lambda_u}{\lambda_V} \\
 \cos \gamma_T \cos \psi_T = \frac{\lambda_v}{\lambda_V} \\
 \cos \gamma_T \sin \psi_T = \frac{\lambda_w}{\lambda_V}
 \]
- primer vector magnitude $\lambda_V = \sqrt{\lambda_u^2 + \lambda_v^2 + \lambda_w^2}$
Thrust Management (1)

- the thrust magnitude is discontinuous
- the thrust level can be decided during integration according to the sign of S_F
- the thrust magnitude at a given instant and the result of the integration may depend on the integration step
- convergence difficulties may be experienced because of scarce accuracy in the evaluation of the error gradients
- variable-step integration strategies usually provide better results
Indirect Optimization Methods

Thrust Management (2)

- an alternative approach consists in assuming “a priori” the switching structure, i.e., the succession of thrusting and coasting arcs, by splitting the trajectory into phases
- the thrust level during each phase is given and an accurate integration is allowed
- the switching times are additional unknown parameters of the BVP problem
- for free switching time, boundary conditions for optimality prescribe the Hamiltonian continuity $H_+ = H_-$
- for continuous state and adjoints variables (no constraints on the variables at the impulse) $S_F = 0$ is required

\[
\lambda^T_{r+} V_+ + \lambda^T_{V+} g_+ + T_+ S_{F+} = \lambda^T_{r-} V_- + \lambda^T_{V-} g_- + T_- S_{F-}
\]
Thrust Management (3)

- the switching structure must be assigned a priori, based on experience and/or intuition
- the approach that decides the thrust magnitude during integration should be tried first
- if convergence difficulties are experienced, the switching function history may suggest the switching structure (thrusting arcs when $S_F > 0$, coasting arcs when $S_F < 0$)
- for a given switching structure, the solution must be checked in the light of PMP (verify that $S_F > 0$ during a thrusting phase and $S_F < 0$ during a coasting phase)
- thrusting or coasting arcs must be added or removed when PMP is violated
Switching Structure - Examples
Terminal Conditions (1)

- for maximum final mass $\lambda_{mf} = 1$
- for prescribed final position and velocity the final values of the corresponding adjoint variables are free
- for prescribed final position and free velocity the final values of the velocity adjoint variables are null and $\lambda_{Vf} = 0$ and, therefore, $S_{Ff} < 0$ (the thruster is off, since there is no use in thrusting if the velocity is free)
Terminal Conditions (2)

- minimum time, free final mass $\lambda_{mf} = 0$
- $\lambda_m \leq 0$ (in fact, its derivative is always positive) and $S_F > 0$ at any time (the thruster is always on)
Terminal Conditions (3)

- rendezvous requires $r_f = r_p(t_f)$, $V_f = V_p(t_f)$
- one has $\frac{\partial \psi}{\partial t_f} = \frac{\partial \psi}{\partial (r_p)} (\dot{r}_p) + \frac{\partial \psi}{\partial (V_p)} (\dot{V}_p) = -\frac{\partial \psi}{\partial r_f} (V_p) + \frac{\partial \psi}{\partial V_f} g_f$ (with $\dot{r}_p = V_p$ and $\dot{V}_p = g$)
- boundary conditions for optimality and transversality condition combined provide $H - \lambda^T_v V_p - \lambda^T_r g = 0$ that is $T S_F = 0$, since $x = x_p$ at the rendezvous
- since the rendezvous is actually obtained when the thruster is switched on ($T > 0$), then $S_F = 0$ is usually imposed at the final point
Indirect Optimization Methods

Indirect trajectory optimization

Optimal Phasing

- Assume optimal phasing between the relevant planets to define unconstrained optimum and find tentative solutions for the rendezvous problem.
- "Move" the target planet to the required position by evaluating position and velocity at the relevant time t as the values assumed at $t + t^*$, with t^* optimization parameter.
- Impose $r_f = r_p(t_f + t^*)$, $V_f = V_p(t_f + t^*)$.
- Boundary conditions for optimality require $\mu^T(\partial \psi/\partial t^*) = 0$.
- Since $\partial \psi/\partial t^* = \partial \psi/\partial t_f$, the transversality condition becomes $H_f = 0$, as in a time-free problem.
- Similar conditions are obtained if optimal phasing is assumed for an intermediate planet (flyby).
Impulsive Thrust (1)

- an impulse may me considered as a discontinuity in velocity and mass

\[
\Delta V = V_+ - V_-, \quad m_+ = m_- \exp(-\Delta V/c)
\]

- boundary conditions for optimality require

\[
\begin{align*}
-\lambda_{V_-} + (\mu m_-/c) \exp(-\Delta V/c) \Delta V/\Delta V &= 0 \\
\lambda_{V_+} - (\mu m_-/c) \exp(-\Delta V/c) \Delta V/\Delta V &= 0 \\
-\lambda_{m_-} - \mu \exp(-\Delta V/c) &= 0 \\
\lambda_{m_+} + \mu &= 0
\end{align*}
\]

- this implies

\[
\begin{align*}
\lambda_{V_-} &= \lambda_{V_+} = \lambda_V \Delta V/\Delta V \text{ (the impulse is parallel to the primer vector, which is continuous)} \\
\lambda_{m_+} &= \lambda_{m_-} \exp(+\Delta V/c) \text{ (the product } m\lambda_m \text{ is continuous)} \\
\lambda_V &= m\lambda_m/c \text{ (the switching function is null)}
\end{align*}
\]
Indirect Optimization Methods

Indirect trajectory optimization

Impulsive Thrust (2)

- if the impulse time is free, transversality conditions require the continuity of the Hamiltonian through the impulse
 \(H_+ = H_- \) (note that the mass and the corresponding adjoint variable do not appear in \(H \), as no thrust is applied except at the impulse)
 \[
 \lambda^T_r V_+ + \lambda^T_v g_+ = \lambda^T_r V_- + \lambda^T_v g_-
 \]
- since position, gravity, and adjoint variable are continuous, one obtains
 \[
 \lambda^T_r (V_+ - V_-) = \lambda^T_r \Delta V = 0
 \]
- this implies \(\lambda^T_r \lambda_v = 0 \), that is \(\dot{\lambda}_v \lambda_v = \lambda_v \dot{\lambda}_v = 0 \)
- the derivative of the primer magnitude must be null, and, therefore, also \(\dot{S}_F = 0 \)
Impulsive Thrust (3)

- the switching structure (i.e., number and sequence of impulses) must be assumed a priori
- impulses must be added when the switching function becomes positive, i.e., $\lambda_V > m\lambda_m/c$ (note that the larger is c, the smaller is the value that λ_V must assume at the impulse)
- impulse magnitude tends to vanish when the impulse is not required (signaling that the impulse should be removed from the switching structure)
Indirect Optimization Methods

Interplanetary Trajectories - Departure (1)

- the dimension of and the time spent inside the sphere of influence is neglected
- impulsive departure from parking orbit
- hyperbolic excess velocity $V_\infty = V_0 - V_p$ with V_p planet heliocentric velocity and V_0 spacecraft heliocentric velocity at escape
- impulse magnitude $\Delta V = \sqrt{V_\infty^2 + V_{esc}^2} - V_{orb}$, with V_{esc} and V_{orb} escape velocity and orbital velocity at departure, respectively (the departure point should be the periapsis of the parking orbit)
- escape mass $m_0 = m_{orb} \exp(-\Delta V/c)$
- position $r_0 = r_p$
Interplanetary Trajectories - Departure (2)

- boundary conditions for optimality require
 \[\lambda V_0 - (\mu m_{orb}/c) \exp(-\Delta V/c) V_\infty/\sqrt{V_\infty^2 + V_{esc}^2} = 0 \]
 \[\lambda m_0 + \mu = 0 \]

- this implies
 \[\lambda V_0 = \lambda V_0 V_\infty/\sqrt{V_\infty^2 + V_{esc}^2} \quad \text{(the hyperbolic excess velocity is parallel to the primer vector)} \]
 \[\lambda V_0 = (m_0 \lambda m_0/c)V_\infty/\sqrt{V_\infty^2 + V_{esc}^2} \]

- in comparison with a deep-space impulse, where
 \[\lambda V = m\lambda m/c, \text{ an impulse inside a sphere of influence occurs with a negative switching function, i.e., it is more convenient to use thrust close to a planet than outside its sphere of influence} \]
Interplanetary Trajectories - Arrival

- specular maneuver compared to departure
- under the same assumptions $r_f = r_p$, $V_\infty = V_f - V_p$,
 \[
 \Delta V = \sqrt{V_\infty^2 + V_{esc}^2} - V_{orb}
 \]
- mass delivered into the parking orbit $m_{orb} = m_f \exp(-\Delta V/c)$ is maximized
- boundary conditions are $\lambda_{Vf} = -\lambda_{Vf} V_\infty / \sqrt{V_\infty^2 + V_{esc}^2}$ (the hyperbolic excess velocity is parallel and opposite to the primer vector)
 \[
 \lambda_{Vf} = (m_f \lambda_m/c) V_\infty / \sqrt{V_\infty^2 + V_{esc}^2}
 \]
Interplanetary Trajectories - Flyby (1)

- the dimension of and the time spent inside the sphere of influence is neglected
- planet intercept requires $r_+ = r_- = r_p$
- planetocentric energy conservation requires conservation of hyperbolic excess velocity magnitude
 \[V_{\infty+}^2 = (V_+ - V_p)^2 = V_{\infty-}^2 = (V_- - V_p)^2 \]
- the V_∞ turn depends on the height of the hyperbola periapsis R_p
Interplanetary Trajectories - Flyby (2)

- rotation angle
 \[\delta = \pi - 2\Phi \]
- \(\cos \Phi = \sin(\delta/2) = 1/e \)
- \(\sin(\delta/2) = \frac{\mu_p/R_p}{V_\infty^2 + \mu_p/R_p} \)
- \(b = r_p \sqrt{V_\infty^2 + 2\mu_p/R_p} V_\infty \)
Indirect Optimization Methods

Indirect trajectory optimization

Free-Height Flyby

- imposed boundary conditions $r_+ = r_- = r_p$, $V_{\infty+}^2 = V_{\infty-}^2$, and $m_+ = m_-$

- boundary conditions for optimality
 $\lambda_{r-} - \lambda_{r+} = \mu_1$ (the position adjoint vector presents a free discontinuity)
 $\lambda_{ms+} = \lambda_{ms-}$ (the mass adjoint variable is continuous)
 $\lambda_{V-} = -2\mu_2 V_{\infty-}$ \quad $\lambda_{V+} = -2\mu_2 V_{\infty+}$

- this implies that the primer must be parallel to the hyperbolic excess velocity before and after the flyby and that its magnitude is continuous
Minimum-Height Flyby (1)

• additional boundary condition on the velocity turn
 \[V_{\infty}^T + V_{\infty}^- = - \cos 2\phi \ V_{\infty}^2^- \] with \(\cos \phi = V_p^2 / (V_{\infty}^2^- + V_p^2) \)
 and \(V_p = \sqrt{\mu_p / R_p} \) circular velocity at the minimum allowable distance from the planet

• boundary conditions for optimality state that the position adjoint vector presents a free discontinuity and the mass adjoint variable is continuous

• \(\lambda_{V_-} = -2\mu_2 V_{\infty}^- + \mu_4 V_{\infty}^+ + 2\mu_4 B \ V_{\infty}^- \)
 \(\lambda_{V^+} = -2\mu_2 V_{\infty}^+ - \mu_4 V_{\infty}^- \) with
 \(B = \cos 2\phi - A \sin 2\phi \) and \(A = \frac{d\phi}{dV_{\infty}^-} V_{\infty}^- = \frac{2}{\tan \phi} \frac{V_{\infty}^2^-}{V_{\infty}^2^- + V_p^2} \)
Minimum-Height Flyby (2)

- one has \(\lambda_{V^-} \times V_{\infty^-} = -\mu_4 V_{\infty^+} \times V_{\infty^-} \) and
 \(\lambda_{V^+} \times V_{\infty^+} = \mu_4 V_{\infty^-} \times V_{\infty^+} = \lambda_{V^-} \times V_{\infty^-} \) the primer component perpendicular to \(V_\infty \) is the same before and after the flyby (\(\lambda_{V^+}^{perp} = \lambda_{V^-}^{perp} \))

- also \((\lambda_{V^-} \times V_{\infty^-}) \cdot V_{\infty^+} = 0 \) and \((\lambda_{V^+} \times V_{\infty^+}) \cdot V_{\infty^-} = 0 \)
 that is \(\lambda_V \cdot (V_{\infty^+} \times V_{\infty^-}) = 0 \) the primer lies on the flyby plane before and after the flyby

- finally \(\lambda_{V^-} \cdot V_{\infty^-} - 2\mu_2 V_{\infty^-}^2 + \mu_4 V_{\infty^+} \cdot V_{\infty^-} + 2\mu_4 B V_{\infty^-}^2 = 0 \)
 and \(-\lambda_{V^+} \cdot V_{\infty^+} + 2\mu_2 V_{\infty^+}^2 + \mu_4 V_{\infty^-} \cdot V_{\infty^+} = 0 \)
 which provide the change in the primer component parallel to \(V_\infty \),
 that is \(\lambda_{V^+}^{par} = \lambda_{V^-}^{par} + 2A \lambda_{V^-}^{perp} \)
Minimum-Height Flyby (3)

- the direction of the primer component perpendicular to the hyperbolic excess velocity must be checked to ensure the height constraint requirement.
- the constraint is required when the λ_V perpendicular component is directed toward the planet, i.e., is in the direction of the velocity rotation.
- the constraint must be removed when it is directed opposite to the velocity turn.
- it is sufficient to check the sign of $(\lambda_V \times V_{\infty}) \cdot (V_{\infty+} \times V_{\infty-})$, which must be positive.
Indirect Optimization Methods

Indirect trajectory optimization

Minimum-Height Flyby (4)
Flyby - Transversality Conditions (1)

- one has $t_+ = t_-$ and, as far as the condition at flyby on position and velocity are concerned (only the terms $r - r_p$ and $V - V_p$ appear), one has

$$\frac{\partial \psi}{\partial t} = -\left(\frac{\partial \psi}{\partial r}\right)\dot{r}_p - \left(\frac{\partial \psi}{\partial V}\right)\dot{V}_p$$

- the transversality condition becomes

$$H_- - \mu^T(\frac{\partial \psi}{\partial r_-} V_p + \frac{\partial \psi}{\partial V_-} g) - \mu_T = 0$$

$$-H_+ - \mu^T(\frac{\partial \psi}{\partial r_+} V_p + \frac{\partial \psi}{\partial V_+} g) + \mu_T = 0$$

- using the boundary conditions on the adjoint variables these equations become

$$H_- - \lambda^T_{r-} V_p - \lambda^T_{V-} g = H_+ - \lambda^T_{r+} V_p - \lambda^T_{V+} g$$

- using $H = \lambda^T_r V + \lambda^T_V g + TS_F$ one has

$$\lambda^T_{r-} V \infty_- + T_- S_F_- = \lambda^T_{r+} V \infty_+ + T_+ S_F_+$$
Flyby - Transversality Conditions (2)

- for a free-height flyby λ_V is parallel to V_∞ and $\lambda_{V+} = \lambda_{V-}$
- therefore, $S_{F+} = S_{F-}$ and $T_+ = T_-$ (in fact, the thrust magnitude is only determined by S_F)
- the transversality condition becomes $\dot{\lambda}_{V+} = \dot{\lambda}_{V-} = 0$
- on the contrary, for a minimum-height flyby S_F is discontinuous and the thrust may also be discontinuous
Propulsion System Optimization (1)

• when electric propulsion is employed, the available power and the values of thrust and specific impulse may be subject to optimization

• the propulsion system mass can be considered in the performance index by posing $\varphi = m_f - m_{ps}$

• assume m_{ps} proportional to the thrust power $m_{ps} = \beta Tc/2$

• additional (constant) variables T and c with $\dot{T} = 0$ and $\dot{c} = 0$

• introduce adjoint variables λ_T and λ_c and derive Euler-Lagrange equations $\dot{\lambda}_T = -\partial H/\partial T$ and $\dot{\lambda}_c = -\partial H/\partial c$
Propulsion System Optimization (2)

- derive boundary conditions for optimality at the initial point $\lambda_{T0} = 0$, $\lambda_{c0} = 0$ and final point $\lambda_{mf} = 1$, $\lambda_{Tf} = -\beta c/2$, $\lambda_{cf} = -\beta T/2$
- solution provides the optimal values for T and c
- a constraint on the trip time is required to avoid $T \to 0$ and $t \to \infty$
Variable Specific Impulse (1)

- electric propulsion system with variable specific impulse and thrust at constant power (and efficiency) \(P = Tc/(2\eta) \) and \(T = 2\eta P/c \)
- consider \(P \) and \(c \) as control variables with \(0 \leq P \leq P_{max} \) with unbounded specific impulse (and thrust)
- the Hamiltonian for optimal thrust direction (parallel to the primer vector) is \(H = \lambda^T_r V + \lambda^T_V g + \left(\frac{\lambda V}{m} - \frac{\lambda m}{c} \right) 2\eta \frac{P}{c} \)
- optimal exhaust velocity from \(\partial H/\partial c = 0 \), that is \(c = 2m\lambda m/\lambda V \), which gives \(T = \eta P\lambda V/(m\lambda m) \)
- the Hamiltonian becomes \(H = \lambda^T_r V + \lambda^T_V g + \eta \frac{\lambda V P}{m c} \)
- \(\partial H/\partial P > 0 \) and \(P = P_{max} \) is always required
Variable Specific Impulse (2)

- a constraint on the total trip time is required to avoid solutions with $T \to 0$ and $c \to \infty$ for $t \to \infty$
- the quantity $m^2 \lambda_m = b$ is constant, as
 \[
 \frac{d(m^2 \lambda_m)}{dt} = \lambda V T - 2m \lambda_m \frac{T}{c} = 0
 \]
 for the optimal exhaust velocity
- one has $c = 2b/(m \lambda_V)$ and the acceleration $T/m = \eta P \lambda_V / b$
 only depends on λ_V
- for a given trip time the acceleration history is fixed and does not depend on the mission parameters (power, efficiency)
- exhaust velocity history and payload, instead, depend on P and η
Variable Specific Impulse (3)

- for bounded specific impulse $c_{\text{min}} \leq c \leq c_{\text{max}}$ and thrust $T_{\text{min}} = 2\eta P/c_{\text{max}} \leq T \leq T_{\text{max}} = 2\eta P/c_{\text{min}}$, define the power switching function $S_P = \frac{\lambda_v}{m} - \frac{\lambda_m}{c_{\text{max}}} \geq \frac{\lambda_v}{m} - \frac{\lambda_m}{c}$

- when $S_P < 0$ the quantity $\partial H/\partial P$ is surely negative and $P = 0$, otherwise $P = P_{\text{max}}$ must be adopted

- $c = 2m\lambda_m/\lambda_V$ when $c_{\text{min}} \leq 2m\lambda_m/\lambda_V \leq c_{\text{max}}$, otherwise the closer extreme must be adopted (c_{min} when $c_{\text{opt}} \leq c_{\text{min}}$, c_{max} when $c_{\text{opt}} \geq c_{\text{max}}$)

- discrete values of the specific impulse could also be considered
Variable Specific Impulse (4)

![Diagram showing variable specific impulse with exhaust velocity c]

- $P = P_a; c = c_{\text{min}}$
- $P = P_a; c = c_{\text{opt}}$
- $P = P_a; c = c_{\text{max}}$
- $P = 0$

Exhaust velocity c
Aerodynamic Forces

- equations of motion

\[
\frac{d\mathbf{r}}{dt} = \mathbf{V} \\
\frac{d\mathbf{V}}{dt} = g + \frac{T}{m} + \frac{D}{m} + \frac{L}{m} \\
\frac{dm}{dt} = -\frac{T}{c}
\]

- lift \(L = qSC_L L/L \), drag \(D = qSC_D V_r/V_r \), with dynamic pressure \(q = \rho V_r^2/2 \) and relative velocity \(V_r \)

- assume parabolic polar \(C_D = C_{D_0} + KC_L^2 \)
Optimal Aerodynamic Control

- Hamiltonian
 \[H = \lambda_r^T V + \lambda_V^T g + TS_F + \frac{qS}{m} A_F \]

- aerodynamic acceleration coefficient
 \[A_F = -C_D \lambda_V^T V_r / V_r + C_L \lambda_V^T L / L \]

- optimal controls maximize the scalar projection of the aerodynamic force on \(\lambda_V \)

- lift in the plane defined by relative velocity \(V_r \) and primer vector \(\lambda_V \)

- lift coefficient \(C_L = C_L = \tan \delta / 2K \) (or \(C_L = C_{L_{max}} \) if \(\tan \delta / 2K > C_{L_{max}} \)) where \(\delta \) is the angle between \(V_r \) and \(\lambda_V \)
Optimal Aerodynamic Force
Indirect Optimization Methods

Indirect trajectory optimization

Geopotential Perturbation

• potential given by

\[
\frac{V}{\mu/r} = - \left[1 + \sum_{n=2}^{N} \left(\frac{r E}{r} \right)^n \sum_{m=0}^{n} \left(C_{nm} \cos m \lambda + S_{nm} \sin m \lambda \right) P_{nm}(\sin \varphi) \right]
\]

• perturbing acceleration

\[(a_J)_u = \frac{\partial \Phi}{\partial r} \]
\[(a_J)_v = \frac{\partial \Phi}{\partial \vartheta} \left(\frac{1}{r \cos \varphi} \right) \]
\[(a_J)_w = \frac{\partial \Phi}{\partial \varphi} \left(\frac{1}{r} \right) \]

• derivatives of the adjoint variables are modified: simple calculations through a recursive scheme
Third-Body Gravitational Perturbation

• perturbing acceleration ($\mathbf{R} = \mathbf{r} - \mathbf{r}_p$ is the spacecraft position vector wrt third body)

$$a_p = -\left(\frac{\mu_p}{R^3}\right)\mathbf{R} - \left(\frac{\mu_p}{r_p^3}\right)\mathbf{r}_p$$

• projection in the topocentric frame gives components of the perturbing accelerations as functions of position vector

• derivatives of the adjoint variables to position are modified: simple calculations (even though tedious)
Ascent: Maximum Dynamic Pressure

- an arc with constant dynamic pressure q at the maximum allowable value may be required
- thrust modulation to assure constant q
- q is a function of state variables through relative velocity and density $q = q[(\rho(r), V_{rel})] = q(r, u, v, w)$
- the equation
 \[
 \frac{dq}{dt} = \frac{\partial q}{\partial \dot{x}} \dot{x}
 \]
 provides the thrust magnitude
- $q = q_{max}$ at the start of the arc and $T = T_{max}$ at the arc end are the required boundary conditions
- Euler-Lagrange equations and boundary conditions for optimality are modified
Ascent: Maximum Heat Flux

- a constraint on the heat flux h may be required
- $h = h_{max}$ and possibly $\dot{h} = 0$ are the required boundary conditions
- h is a function of state variables through relative velocity and density $h = h[(\rho(r), V_{rel}) = h(r, u, v, w)]$
- discontinuities in the adjoint variables arise
- good point for multiple shooting
Singular Arcs: When

- bang-bang control can be explained by the requirement of thrusting in the most favorable positions
 - larger thrust reduces velocity losses: use T_{max}
 - gravitational losses are smaller for larger velocity
- singular arcs arise when a reduced thrust is useful
 - aerodynamic drag: grows with velocity
 - three-body ?
- signal of requirement
 - chattering
 - irregular behavior of the switching function (it is not possible to satisfy PMP)
Singular Arcs in Atmospheric Flight

- Hamiltonian

\[H = \lambda_r^T v + \lambda_v^T g + \frac{T}{m} S_F + \frac{q}{m} A_F \]

- thrust switching function and aerodynamic coefficient (\(\delta\): angle between velocity and primer vector)

\[S_F = \lambda_v - \lambda_m m/c \]

\[A_F = -C_D \lambda_v \cos \delta + C_L \lambda_v \sin \delta \]

\[C_L = \frac{\tan \delta}{2K}, \quad C_D = C_{D0} + KC_L^2 \]
Singular Arcs in Atmosphere: Derivation

- S_F and \dot{S}_F vanish at arc extremities: boundary conditions to determine initial and final time, with

$$\dot{S}_F = \frac{\partial S_F}{\partial x} \dot{x} + \frac{\partial S_F}{\partial \lambda} \dot{\lambda}$$

- \dot{S}_F does not contain T

$$\dot{S}_F = -\frac{\lambda_T^T \lambda_v}{\lambda_v} - \frac{S}{m} \left[\frac{q A_F}{c} + (A_F Q_v^T + q A_v^T) \frac{\lambda_v}{\lambda_v} \right]$$

- coefficients

$$Q_v^T = \partial q / \partial v \quad A_v^T = \partial A_F / \partial v$$
Indirect Optimization Methods

Singular Arcs in Atmosphere: Thrust

- $\ddot{S}_F = 0$ provides thrust magnitude (first-order singular arc)
 \[
 \ddot{S}_F = \frac{\partial}{\partial x}\dot{x} + \frac{\partial}{\partial \lambda}\dot{\lambda}
 \]

- T appears in derivatives of velocity components and mass
 (a_0: inertial + aerodynamic acceleration)
 \[
 \ddot{S}_F = \Lambda - \frac{S}{m} \left(S^T_r \dot{r} + S^T_v a_0 + S^T_\lambda \dot{\lambda}_v + S_T T \right)
 \]

- setting $\ddot{S}_F = 0$ provides
 \[
 T^* = \frac{m\Lambda/S - S^T_r v - S^T_v a_0 - S^T_\lambda \dot{\lambda}_v}{S_T}
 \]

- $S_T = 0$ vanishes in the absence of aerodynamic terms
Requirements for Convergence

- BVP solution is based on assumption of linear behavior
 - accurate evaluation of the error gradients
 - small corrections, i.e., tentative solution close to optimal solution
Error Gradient Evaluation

• accurate integration of the equations of motion
 – variable step (e.g., Adams Moulton) can handle control discontinuities
 – separation into phases can handle control discontinuities
• multiple shooting to reduce influence of single parameters
• normalization is usually mandatory (same order of magnitude for all the variables)
Tentative Solution

• must be sufficiently close to the optimal solution
 – switching structure/constraints assessment
 – avoid divergence
 – small values for the adjoint variables
• correction relaxation (i.e., use a fraction of the computed correction)
Indirect Optimization Methods

Hints and tips

Optimal Phasing

• define mission opportunities in a large launch window (in particular when gravity assist is exploited)
 – evaluate optimal phasing transfer and its periodicity
 – check for target position on possible arrival dates

• find most favorable positions for gravity assists (plane/eccentricity changes)

• favorable opportunities when actual position close to desired one
Indirect Optimization Methods

Hints and tips

Optimal Phasing - Asteroid Rendezvous

• optimal phasing transfers from earth repeat every year
• check target position on arrival day/month in available years
• one/two good opportunities every synodic cycle
Multiple Shooting

• some cases are very sensitive to initial values
 – ascent: strong nonlinearity
 – multiple flybys: sudden discontinuities
Multiple Shooting - Ascent

- uncorrect values: no integration possible
- split (e.g., at maximum heat flux)
- re-start with values that assure continuous ascent (e.g. positive radial velocity)
Multiple Shooting - Flybys

- use point immediately after flyby as split point
- accommodate for errors due to inaccurate estimations of the initial values
- position and velocity components suggested by physics of the problem
- try nonpropelled tentative solutions
Trajectory Patching

- trajectories with multiple arcs
 - ΔV gravity-assist orbits
 - multiple-flyby trajectories
- solve simple one-arc problem with proper boundary/optimality conditions
- patch simple trajectories with a multiple-shooting approach
Trajectory Patching - ΔV-GA Trajectories

- maximize V_∞ gain for assigned propellant consumption (or dual problem)
- use nonpropelled resonant orbit as tentative solution
Trajectory Patching - Multiple Flybys

- connecting planets: Hohmann transfer
- resonant orbits: assign arrival V_∞ for following leg
- orientation suggested by geometry of orbits
Trajectory Patching - GTOC1

- EVVJ-GA transfer to deflect asteroid 2001 TW229
- first, each leg optimized separately
- final optimization of complete trajectory
Trajectory Patching - GTOC4

- flyby of 36 asteroids
- legs encompassing up to 15 flybys are optimized
- start following leg with 3 or 4-asteroid overlap
Trajectory Patching - GTOC5

- rendezvous and flyby of 17 asteroids
- first, simple R(i)-F(i)-R(i+1) legs optimized separately, mixed time-mass performance index
- optimization of up to 5 joined legs follows

![Graph showing Earth, Rendezvous, and Flyby over time](image)
Homotopy

- complex trajectories/dynamics
 - three-body problem
- solve simple constrained trajectory
- solve transition problems towards optimal solution with blended boundary conditions between constrained/optimal problem
Homotopy - Moon Return

- fix proper times and impulses for starting solution
- linear combination of the boundary conditions with multipliers c and $1 - c$
- quite easy convergence
Indirect Optimization Methods

Hints and tips

Continuation

- unknown switching structure:
 - lunisolar effect on Highly Elliptic Orbit deployment
- gradual introduction of disturbing parameter
- (automatic) check evolution of switching structure
- extremely more efficient than smoothing techniques
Indirect Optimization Methods
Hints and tips

Continuation - HEO Deployment

- multiple revolutions
- energy modulated to have favorable Moon phasing at apogee passages
- (almost) equal burns at each apogee passage without the Moon
- apogee burns may vanish as Moon’s gravity is introduced

L. Casalino 2015
Independent Variable Selection

- thrusting is usually preferred at specific positions, fixed in space
- quasi-periodicity with respect to longitude
- passage times may be unknown (depend on trajectory)
 - multiple revolution geocentric transfers
 - lunisolar effect on Highly Elliptic Orbit deployment
- use longitude as the independent variable
Indirect Optimization Methods

Independent Variable Selection - HEO

Deployment

- burns at apsides
- orbit periods dictated by better use of lunisolar perturbation
- accurate integration requires splitting the trajectory into arcs
- switching times cannot be estimated, but switching angles can

<table>
<thead>
<tr>
<th>Time, hr</th>
<th>Long., rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.4-84.3</td>
<td>10.73-10.75</td>
</tr>
<tr>
<td>84.5-84.4</td>
<td>11.27-11.25</td>
</tr>
<tr>
<td>125.7-126.5</td>
<td>14.13-14.14</td>
</tr>
<tr>
<td>129.2-126.5</td>
<td>14.16-14.14</td>
</tr>
<tr>
<td>212.4-211.7</td>
<td>20.41-20.42</td>
</tr>
<tr>
<td>219.2-214.9</td>
<td>20.46-20.44</td>
</tr>
<tr>
<td>311.8-299.9</td>
<td>26.70-26.69</td>
</tr>
<tr>
<td>311.8-304.9</td>
<td>26.70-26.74</td>
</tr>
<tr>
<td>408.2-397.8</td>
<td>33.00-33.00</td>
</tr>
</tbody>
</table>

Comparison 1/1/15-15/1/15

L. Casalino 2015
Indirect Optimization Methods

Hints and tips

Independent Variable Selection - Multiple Revs.

• typical case: LeoGeo transfer
• continuation approach: gradually increase number of revs., final radius, inclination change
• small changes are accepted easily
• very difficult strict fulfillment of boundary conditions

<table>
<thead>
<tr>
<th>Type</th>
<th>I_{sp}, s</th>
<th>t, d</th>
<th>Revs.</th>
<th>mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edelbaum</td>
<td>∞</td>
<td>191</td>
<td>1048</td>
<td>1</td>
</tr>
<tr>
<td>Ion thruster</td>
<td>3000</td>
<td>174</td>
<td>989</td>
<td>0.822</td>
</tr>
<tr>
<td>Hall thruster</td>
<td>1500</td>
<td>158</td>
<td>936</td>
<td>0.675</td>
</tr>
<tr>
<td>Arcjet</td>
<td>600</td>
<td>122</td>
<td>802</td>
<td>0.374</td>
</tr>
</tbody>
</table>

L. Casalino 2015
Smart Constraint Position

• proper constraint definition may simplify derivation and solution
• use alternative (equivalent or almost equivalent) simpler form of constraint
 – separation constraint at apogee in HEO: $|r_1 - r_2| = k$
 – can be turned into time constraint $t_{a2} - t_{a1} = k/v_a$
Nested Indirect Methods

- stepped approach to solve very complex problem
- in multiple-revolution transfers solve single revolution problem first
- patch single revolution solutions together
 - LeogGeo transfer with electric propulsion
Nested Indirect Methods: Single Revolution

- one revolution: almost circular orbit, small inclination change, constant mass (Edelbaum’s approximation)
- apply OCT to define optimal controls (thrust angles, specific impulse if variable) and evaluate changes of a and m in one revolution
- changes for unit radius orbit with unit mass
 - constant specific impulse $\Delta r = 8\pi P \cos \beta / c_N$, $\Delta i = 8P \sin \beta / c_N$, $\Delta m = -4\pi P / c_N^2$, control is out-of-plane angle β
 - variable specific impulse $\Delta r = 16\pi PK_1$, $\Delta i = 2\pi PK_3$, $\Delta m = -2\pi P(8K_1^2 + K_3^2)$, controls are K_1 and K_3
Nested Indirect Methods: Multiple Revolutions

- multiple revolutions: radius and mass changes are considered and elements changes are modified accordingly
- differential equations with r as independent variable
 - constant specific impulse
 \[
 \frac{di}{dr} = \frac{\tan \beta}{(\pi r)} \quad \frac{dt}{dr} = \frac{m}{(2\sqrt{r^3T \cos \beta})}
 \]
 \[
 \frac{dm}{dr} = -\frac{m}{(2c\sqrt{r^3 \cos \beta})}
 \]
 - variable specific impulse
 \[
 \frac{di}{dr} = \frac{K_3}{(8rK_1)} \quad \frac{dt}{dr} = \frac{m}{(8P\sqrt{r^3 K_1})}
 \]
 \[
 \frac{dm}{dr} = -\frac{m(8K_1^2 + K_2^2)}{(8\sqrt{r^3K_1})\sqrt{r^3T \cos \beta})}
 \]
Nested Indirect Methods: Optimal Problem

• apply OCT to determine optimal values of the controls (either β or K_1 and K_2)

 - constant specific impulse

 \[
 H = \lambda_i \tan \beta/(\pi r) + \lambda t m/(2\sqrt{r^3} T \cos \beta) - \lambda m m/(2c\sqrt{r^3} \cos \beta)
 \]

 \[
 \sin \beta = \frac{2\lambda_i}{\pi m(\lambda_m/c - \lambda_t/T) \sqrt{r}}
 \]

 - variable specific impulse

 \[
 H = \lambda_i K_3/(8r K_1) + \lambda t m/(8P\sqrt{r^3} K_1) - \lambda m m(8K_1^2 + K_3^2)/(8\sqrt{r^3} K_1)
 \]

 \[
 K_3 = \frac{\lambda_i \sqrt{r}}{2m \lambda_m} \quad K_1 = \sqrt{\frac{1}{8} \left(\frac{1}{\lambda_m P} - K_3^2 \right)}
 \]
Nested Indirect Methods: LeoGeo Results

- Inclination change $\Delta i/T_n$
- Radius change $\Delta r/(\pi T_n)$
- Thrust angle β (deg)
- Effective exhaust velocity c

L. Casalino 2015
Indirect Methods and Evolutionary Algorithms

- use an EA to determine the unknowns of the MPBVP from the application of OCT
 - solution may be inaccurate
 - usually not effective in complex problems
- use an EA to estimate the unknowns of the MPBVP (that is, to get a tentative solution)
 - requires solution of MPBVP with Newton’s method
Future Developments

• applications suited for indirect methods are almost infinite

• possible interesting developments
 – nested optimization of geocentric transfers with eclipses and perturbations
 – developments of general (automatic) techniques to define and correct switching and constraint structure
Conclusions

• savvy application of indirect methods may allow for solution of very complex problems
• several techniques to permit convergence may be devised depending on the peculiarities of the problem
• fundamental relevance of problem formulation
• user’s intuition necessary to guide the solution process