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Optimal Control Problem O
_|
- . . o . Z
Minimise: . =
= p(X(t), X(t,). bt ) + [ LX(D), u(t), tat o
t, =
=
Subject to a set of differential constraints S

X; (1) = F (x(1),u(t),t), =1,...,N,

t, <t<t,

Boundary constraints
v, (X(t,),x(t;),t;) =0, 1=1..,k<2n

And algebraic constraints

G, (x(t),u(t),t)=0, 1=1...m, t,<t<t,
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Example of Optimal Control Problem ©
_|
=*Minimise: E
J =@ (X(t), X(t; ). t,,t, ) = V(t,) o
@)
Subject to a set of differential constraints =
P
X =V .9
. T —D
V= —J;
m
_ T
m = —
golsp

Boundary constraints v, (x(t,), x(t, ),t,) = h(t,) = 0

w,(X(ty), x(t;),t;) =v(t,) =0
v, (X(t,), x(t;),t;) =m(t,) = m,
v, (X(t), x(t; ), t;) = h(t;) = hy
And algebraic constraints
G =T
G,=T, .,-T
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Pontryagin Maximum Principle

=Consider the optimal control problem:
minJ(u,t,) = o (X(t), X(t), 1 t )+_[L(x(t),u(t),t)dt
ty

t

subject to:

X(t) = F(t,x(t), u(t))

w(x(t), x(t;)) 20
If (u',t;) eClt, TI" x[t,, T) is optimal, with response x" e C[t,, TT", being ¢
and C! the spaces of piecewise continuous and piecewise continuous and
differentiable functions respectively. Then, there exist (4;,4") e C'[t,, T]™

and v" e ®™ such that: [ 47(t),a"(t) |#[0,0].t, <t <t
A(t)=0, A(t)=—H,(x"(t),u’(t), 2, (1), A" (1)), ae. [t,t]
with H (x(t), u(t), 4, (1), A()) = A L(x, u,t) + AT F(x, u,t)
u =argmin H (X (t),u(t), 4, (t), 1" (t))

uelU

@)
O
—
<
>
—
O
@)
=
—
P
@)
—

25 () = const > 0, H (X" (t,),u"(t, ), A5 (1), 27(t,)) + (¢ +vw,)

M) = (Cpx + VT‘l’x)

Tw= > St thl
vy=0 v>0 Glarsamcyde

t:tf

t=t;
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First Order Necessary Optimality Conditions

=Euler-Lagrange Equations:

@)
—
—
<
>
—
O
@)
=
—
P
@)
—

)’(i=a—H=Fi(x,u,t) A =— oH _—ﬁ—ﬂff - i=1,...,n
o/, 8x OX; OX;
=with optimality condition
P Y oH :8L + A7 al:—O =1,...,1
ou; du; ou;
t, <t<t,
=and transfersality conditions: . (9 Loy
A(t,) =D =(—+u —j
OX OX e

0= (®, +H) |t=t
D = P(Xq, X; 1tf)+UTW(XO’Xf L)

=First order conditions only guarantee that the solution is locally stationary.

=Legendre-Clebsch Condition: H, =0, t,<t<t,

Strathcl @
Glasgow Yd
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Example 2: quadratic control ©
_|
L <
*Minimise 4o =
. 2
J = IE udt -
t O
=
_|
Subject to: X =V o
V=—X+uU &
With boundary conditions:
X(t,) =1
v(t,) =0
x(t,)=0

V(tf) =0
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Example 2: quadratic control ©
_|
. : <
"Hamiltonian 1 >
H=§u2+/1xv+ﬂv(—x+u) 8
with adjoint equations: =
ﬂ’x - _ﬁ — ﬂ’v ;
OX o
: oH -
=" =_2
. . . . ﬂ‘\l av g
optimality condition:
oH _ u+ A,
ou
And transversality conditions:
ﬂ‘x (tf ) - Vx
A, (t;) =v,

From the adjoint equations and the optimal control condition we get:
A, (t) = Asint + B cost
A,(t) = Bsint — Acost

u = Acost— Bsint O <
Strathclyde
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Example 2: quadratic control

and if one replaces the control law into the dynamic equation:

X=V
V=—X+ Acost — Bsint

which is a harmonic oscillator with a periodic forcing term:
X =—X+ Acost — Bsint

@)
—
—
<
>
—
O
@)
=
—
P
@)
—

The solution is of the form:

X =Ccost + Dsint+§cost—gsint

And the four constants can be determined so that the boundary conditions
are satisfied.

Strathcl @
Glasgow Yd
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Optimal Control Problem with Mixed Path Constraints

=Consider the optimal control problem:
ts
minJ(u,t,) = 9 (X(t), X(t,), 1.t )+IL(x(t),u(t),t)dt
to

subject to:

X(t) = F(t,x(t), u(t))
w(x(t,),x(t,)) >0
G(t,x(t),u(t)) >0

@)
O
—
<
>
—
O
@)
=
—
P
@)
—

= Form the Lagrangian:

AUt )=H+p'G
with :
H (x(t),u(t), 4, (t),A()) = A,L(x,u,t) + L' F(x, u,t)

= with Lagrangian multipliers pu

4
Universityof 42

Strathclyde
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Maximum Principle with Maxed Path Constraints

If (u',t;)eC[t,, T]* x[t,, T)is optimal, with response X" eC'[t,,T]} being ¢
and C! the spaces of piecewise continuous and piecewise continuous and
differentiable functions respectively. Then, there exist (,10 Y )eCl[to,T]”+1

neClt,T]" and y cq;» such that:

| A5 (), 27 (1), 0 (1) | #[0,0],t, <t <t

At)=0, A(t)=—A(x"(1),u'(t), 4 (1), 2°(t), 0" (1)),
(1) = A, 5, (X (0),u" (1), 4 (1), 2 (1), (1)), ae [t,t;]
u =argminH (X (t),u(t), A, (t), A (1))

ueU

U (X", 1) ={ueR'|G(x",u,t) > 0}
p () G=0;p >0;
2o (£) = const > 0, H (X" (t,),u"(t,), 45 (t, ), A" (t,)) + (o, +v'w,)

@)
O
—
<
>
—
O
@)
=
—
P
@)
—

=0

tztf

V() =(o+v'y, )

viy=0, v>0 gltarsagtnllclvde

tztf
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First Order Necessary Optimality Conditions with Mixed Path Constraints

@)

O

-

=Euler-Lagrange equations: <

grange eq X. za—AzFi(x,u,t) =

EY) ~

o)

__OA_ AL rOF 503G, =

T X ox ox o ax =

O
=swith Optimality condition: |oA _ oL LT OF + 0G _0 1
ou; au, u, H ou;

i
A(t,) =@ :[6—“’+UT a—‘”j
OX OX

t=tf . ..
 Transversality conditions
0=(D, +H) |

t:tf

D@ = P(Xo, X, ) +0 W (Xg, X, Ty )

=and second order condition: A, >0

University of e

Strathclyde
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Example of Solution O
_|
<

sThe extended Hamiltonian is >
_ Q)
A:/lxv+ﬂv(2_gj_/1m ! +ILL1T+/L12(Tmax_T) O
m Oolp =
where only one of the two conditions on the thrust is true at any one time. o
The dynamic equations are: OA 3
X=——2=V
OA,
v oA T-D B
o4, m ’
. OA T
m=— —=—
aﬂ’m golsp
and the adjoint equations are:
- OA 10D OA 10D OA T-D
A)=——=-4 ——; t)=—-"7=-4 -4, ——; A, ()=——=
«(t) ™ — A,(t) Py xﬂvmav (1) am/%mz
Strathclyde

Glasgow
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Example of Solution O
_|
: . : <
=*The optimal control condition writes >
oA A, A A
e —_ m —_ e O
aT m golsp +/LL.|. lLlZ g
>
where again only one of the two uis true at any one time, and the o
transversality conditions are: A.(t.) =0, oy _ —o,
OX
A =221
/’i’m (tf) -

If one looks at the optimality condition can define the switching function
as:

I=ﬂ"— A >0= 4, >0, =0=T =T,
m gl

A A

m gyl

<0=44>0,,=0=T =0

A e = 0 = singular arc

m | &
Yo sp Universityof 43

Strathclyde
Glasgow Yd
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Treatment of Singular Arcs

=Along singular arcs we have that:

H, =0

u

@)
—
—
<
>
—
O
@)
=
—
P
@)
—

Is satisfied for any admissible control. A solution is to differentiate a
minimum of p times with respect to time until one obtains:

p
d H.
dtP

P
o(d H, |#0
ou \ dtP

The second equation provides the required control law while p-1 is the
order of the singular arc.

=0

Strathcl @
Glasgow Yd
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Optimal Control Problem with State Path Constraints

=Consider the optimal control problem: ty
minJ (u,t,) = (X(t), X(, ), by, t, )+IL(x(t),u(t),t)dt

subject to:

X(t) = F(t,x(t), u(t))
w(x(t,), x(t,)) 20
G(t,x(t)) >0

@)
—
—
<
>
—
O
@)
=
—
P
@)
—

= |n this case the path constraint can not be directly used to form a Lagrangian
function. In fact suppose that G=0 is a path constraint on the position. This
constraint does not provide any information on the velocity and acceleration
at the contact point G=0. As a consequence there is no information on the
correct control to be applied. This is particularly important when pure state
path constraints are introduced via a direct approach.

= The correct way to introduce a pure state path constraint is to differentiate
p times with respect to time till the control appears explicitly:

0 d’G . [
ou dtf Strathclyde

Glasgow
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Optimal Control Problem with State Path Constraints

=Once the control appears explicitly in the constraints, one can form the
Lagrangian (indirect adjoining approach):
; dPG

A(u,t,)=H +
( f) n qtP

with :
H (x(t), u(t), 4, (t), A1) = A4, L(x, u,t) + A F(x,u,t)

@)
O
—
<
>
—
O
@)
=
—
P
@)
—

=For example for p=1 and G=0 one has:
dG(x',t) >0
dt
G(x,t)=0

=:At a contact point 7 the second constraints causes a discontinuity in
adjoint variables and Hamiltonian:

A(t)=A (") +0(r)h (z,X)
H(z")=H(z") - 0(r)h(z,X’)

=swith danother Lagrange multiplier glt.-.rsag'i.'lﬂwe
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Maximum Principle with State Path Constraints

It W t)eé[to,T]qx[t T)is optimal, with response "

eC'[t,, T’ being é

and o the spaces of piecewise continuous and piecewise continuous and

dlfferentlable functions respectively. Then, there exist
neC[to,T] , v eR™  and 0(z) e R™ such that:
[ 4 (). 2", (t) |#[0,0]t, <t <t]
A(®)=0, A(t) = A (x"(t),u"(t), 45 (1), A" (1), " (1)),
X(8) = Ay, (X (1), U7 (1), A (1), A" (1), (1)), ae. [t t7]
u” =argmin H (x"(t), u(t), 4, (t), 2" (1))

U, (x',t) = {u e R |C:j—ct;(x*,u,t) >0,G(x7,u,t) =O}
n(t)'G=0nq >0 <0

2o (£) = const > 0, H (X" (t,), u"(t,), 45 (t, ). A" (t, ) + (o, +v \vt)
A (tf):(¢x+v \I’x)

viy=0, v>0

t=t;

t:tf

(4.27) eCt,, T]™

=0

A() =0 (") +0(r)' G, (z,x)

H(z")=H(z") - 0(z) G (7,x)
0 (7)G(r,x (7)) =0;0"(r) 2 0;0(r) < n(c*)

@)
O
—
<
>
—
O
@)
=
—
P
@)
—

Strathcl @
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@)
—
—
<
>
—
O
@)
=
—
P
@)
—
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FINITE ELEMENTS IN TIME
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Previous Works on Finite Elements in Time for Optimal Control

Since early '90s Finite Elements in Time used for Indirect Transcription:

Late "90s Finite Elements in Time on Spectral Basis for Direct Transcription:

Hodges, D. H. and Bless, R. R., “Weak Hamiltonian Finite Element Method for
Optimal Control Problems,” Journal of Guidance, Control, and Dynamics, Vol. 14,
No. 1, 1991, pp. 148-156.

Hodges, D. H., Bless, R. R., Calise, A. J., and Leung, M., “Finite Element Method for
Optimal Guidance of an Advanced Launch Vehicle,” Journal of Guidance, Control,
and Dynamics, Vol. 15, No. 3, 1992, pp. 664—-671.

Bottasso, C. and Ragazzi, A., “Finite Element and Runge-Kutta Methods for
Boundary-Value and Optimal Control Problems,” Journal of Guidance, Control,
and Dynamics, Vol. 23, No. 4, 2000, pp. 749-751.

L
n
—
o
e
O
L
vy
b
O
=
«Q
—_—
o
-
>
o

Vasile M., Bottasso C.L., Finzi A.E., Lunar Orbital Dynamics by Finite Element in
Time Method, Aerotecnica Missili e Spazio Vol. 75. Numero 3/4, Luglio-Dicembre
1996.

Finzi A., Vasile M. Numerical Solutions for Lunar Orbits. IAF-97-A.5.08, 48th
International Astronautical Congress, October 6-10, 1997/Turin, Italy

Vasile, M. and Finzi, A., “Direct Lunar Descent Optimisation by Finite Elements in
Time Approach,” Journal of Mechanics and Control, Vol. 1, No. 1, 2000.

Vasile, M. and Bernelli-Zazzera, F., “Optimizing Low-Thrust and Gravity Assist

Maneuvres to Design Interplanetary Trajectories,” The Journal of the

Astronautical Sciences, Vol. 51, No. 1, 2003, January-March 2003. o)
thanhynf{%

Strathclyde
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Direct Finite Element Transcription (DFET)

= Strong solution of the differential equations:

ts

_[()'(—F(x,u))dt:

t

= Weak solution of the differential equations:

b [t

t

t

IWT (x—F(x,u))dt =

ty

-n
P
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m

= The solution x and control u satisfy the differential equations in a weak
sense, i.e. with respect to the test functions w.

= Boundary conditions are not exactly satisfied but are satisfied with
respect to the test functions w.

Strathcl @
Glasgow Yd
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Direct Finite Element Transcription (DFET)

= Strong vs. Weak solution of the differential equations:

U
A t_[WT ()’(V“—F(xW,uW))dt:WT (xW—xb)‘:

-n
P
—
m
m
—
m
<
m
P
—]
wn
z
=
<
m
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Direct Finite Element Transcription (DFET) ;‘
=

=  Partial integration of the differential terms: m
m

ty t m
J-WT)'(—WTF(X,U)d'[ZWTX—WTXb f =

o —

t; o

—w'X zf Z

0 —

'[0 —

<

m

ts

IWTX - 1(WTX) ~WTE(x, u)dt = —w' X"
! dt f
ts t

_[ WX +wTF(x,u)dt = WTxbL;

b

= Theintegral can be solved by polynomial representation of the states x,
control u and test functions w and Gauss quadrature.

= The choice of the test function w can be such that the projection is
orthogonal.

Strathcl @
Glasgow Yd
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Direct Finite Element Transcription (DFET)

t

_[v'vTx LW E(x, u)dt = wxt["

t

t

=  Polynomial representation of x, u and w:

P p+1
FE

=  Where x,, u, and w, are discrete nodes and f, and g, are polynomials of
order p-1 and p respectively.

= Note that in principle f, and g, can be any arbitrary function generated
on any arbitrary base.

-n
P
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m

b p+1 T p p+1
I[ZW595j ZXS [ZW gs] F(Xs’us't)dt :Wp+lgp+1(tf)xtf - W gl(tO)XtO
t, \ $=1 s=1

Strathcl @
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Direct Finite Element Transcription (DFET)
p+1 p+1
I(ZW gsj ZX (ZW gsj F(Xs’us’t)dt :Wp+1gp+1(tf )th _Wl gl(to)xto

=  The equation must hold true for any arbitrary w,, hence:

ffgl(t)ixs f.(t)+ 9, (t)F(x,,u,,t)dt =-

-n
P
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m

f g; (t)sz f,(t) +9;F(X,,u,, t)dt =

0

ty D
I gp+1(t)zxs fs (t) + gp+1(t)F(Xs’ us’t)dt = Xt
t s=1




9/2/2012

Direct Finite Element Transcription (DFET)

= Now assume we wanted to use Gauss quadrature formulas to solve the
integrals, then we would have:

Zp:a)k |:gl(Tk)iXs fo(z)+ 9. (7 )F (X, us’Tk):| ==X,

k=1

-n
P
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m

iw{gjm)ix (2)+ 8, (R)F(X,, U7 )}:o

k=1

P p
Zwk |:gp+1(Tk)ZXs 1:s (Tk) + gp+1(Tk)F(Xs’ us’z—k):| = th
k=1 s=1

= Where 1, are Gauss points and t, are Gauss weights.

Strathcl @
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Direct Finite Element Transcription (DFET)

= Discretised Weak solution of the differential equations:

ts

jWTX +W'F(x,u)dt = w'x" :f

0

-n
P
—
m
m
—
m
<
m
P
—]
wn
z
=
<
m

|
Spectral basis: Gauss points used for integration and discretisation
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Example of DFET Integration

= Let us consider the simple linear system with a constant u:

X=V
V=—X+U
o In weak form we can write:

t; b [t
t Vv —X+U vV

t

-n
P
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m

=  And assume we use polynomials of order O for states and controls and
of order 1 for the test functions:

f =1;W=W1M+W M;W:_Wl#ﬁ_wz#

(7 —75) 2 (z; —79)

Strathcl @
Glasgow Yd
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Example of DFET Integration

= The weak solution becomes:

[ o) M A et os) I WU H
& (7; —7) (7; —79) )| Vs (7; —70) (7; —79) )| =X +Us V] Vo

=  Because they need to be true for any arbitrary weight w we can derive
the two equations:

el el L]
'[—— +— dt =—
t (Tf_TO) Vg (Tf_TO) — X + U Vo

I—l | ) dt=| |
to(Tf_TO) Vo | 7y —7p) [ =% + U v f

=  We can now take Gauss integration formulas to solve the integral:

1| X | 7¢—7T|V, At | X i
o, —— + —=-
At| Vv, At | =X, +ug|) 2 vV,

-n
P
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m

1[x] z-z,[v. At [xT
1 At v " At |=x +u.|]2 |v sty S0
§ S S f Strathclyde

Glasgow
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Example of DFET Integration

= The Gauss weight for a single point is equal to 2, therefore we have:

o _L[%]|, A2V E__xb %], AV, __xb
Atlv, | At [-x.+u|)2 v l Vv, | 2 |-x.+ug| v
1| X | At/2]|V At | X ; Xs |, At] Vs X
2| = | 7 [+ 222 = += =
At |V, At | =X, +Ug )2 V], Vo | 2| =X, +U V.

= And if we sum the second to the first we get:

-n
P
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m

= Note that for nonlinear function this is an implicit scheme.
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Direct Finite Element Transcription (DFET)

Boundary
Nodes

Gauss N

Point \i

e The Time domain is decomposed in finite elements leading to a
polynomial development of the solution on spectral basis (Gauss Points)

D Ull I(Il’ )

e Differential constraints are expressed in weak form leading to
discontinuities at boundaries

J.WT (X —F(x,u))dt =

ty

e Gauss formulas for the solution of the integral: high Integration order 2n
= 2k+2

Boundary gap &°

R
At

v

-n
P
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m
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Direct Finite Element Transcription (DFET)

FINI] NI SINJN3TT3 FLINIS

e The controls are discretised using the Guass points used for integration.
e The controls can be discontinuous at the boundaries.

e The integration error within an element is absorbed into the discontinuity at the
boundaries.

Strathcl @
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DFET in Summary

Representation of controls, states and weights on spectral basis.

(4 =PH0); 05 (D) — {5 Lo
w =pf, g, (Dw;

Same bases for the discretisation of objective function and algebraic constraints:

J=¢(X8,X2,tf)+i q UkL[X(Tk)’U(Tk)vp’Tk]%

G(Xs (‘fk)! us(gk)’ gk) 2 0

Differential equations are transformed into algebraic equations:

Z O-k|:W(Tk) X(7, ) +w(z,)’ F(Tk)Azt} Wp+1X +W; X, =0

-n
=
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m
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DFET Assembling Process

Tg (t)Zp:X f(t)+g OFx.,u tdt=—x  Theend boundary node of one element
L S ' T ' must be equal to the beginning boundary
node of the following element

tia D
J. gj(t)zxs fs(t)+ng(XS,Us,t)dt:O
t s=1

-n
=
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m

tio

tia p p
[ 0o D% £+ 0, OF U, Dt =x,, | GO X0+, OF(X,, U, tdt =

ti +1

The last equation of one element
IS matched to the first equation of
the following element.

Boundary nodes disappear except
for the two extremal nodes

fg (t)ZX (1) +9,F(x,, ug,t)dt =0

|+l

|+2

Igp+1(t)zxs f (1) +9,.. (OF(X,,ug, t)dt =X,

m,.,.m%@

Strathclyde
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Example of DFET Assembly

=  Assume we have two elements:

X, | At x| X, | AtV x|
— + — — — + — —
Vo | 2 —x51+usl V|, Vo | 2| =X +Ug vV,
X, | At]Vs x| X, | At]V, x|
+ — = + — =
Vo | 2| =X +Ug vV, A 2| =X +Ug V]

= The end of the first element must be equal to the beginning of

element 2:
|:Xsl:| At |:Vs1 :| |:Xi|b
— + — —_
Vo | 2] =X, +Ug vV,

-n
P
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m
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Direct Finite Element Transcription (DFET)

= The optimal control problem is transformed into a nonlinear
programming problem

-n
=
_|
m
m
—
m
<
m
P
—]
wn
z
=
<
m

J=¢(xg,x2,tf,p)+jL(x,u,p)dt min J(y)
X-F(x,u,p,t)=0
\ c(y)=0
b <y<b
G(x,u,p,t)>0 / =Y =0,
v (Xq, X ,p,t)zf >0 Y=[Xs U5, X 0% .%o, P]

—
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Direct Finite Element Transcription (DFET)

Optimal Control

Problem
NLP Problem
min J(y)
c(y)=0
b, <y<b,
where
y=[x,ut; "

c(y)=

i Oj Wk(Ti)TXs(Ti)+Wk(Ti)TFs(Ti)A_:| W X +W1X11—0

G (X,(7),u (7). 7;) 20

¢I

DEET

o

SSQP
Sparse Sequential
Quadratic

Programming

FINI] NI SINJN3TT3 FLINIS
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Multi-Phase DFET

Discontinuous states can be inserted at the boundary of two phases.

The end states of one phase are matched to the beginning states of another phase through
some interphase constraints or...

...phases can be in parallel.

Phase |
J'(x,u,t)
x =F'(x,u,t)

G'(x,u,t)>0

v' (], X},p,

Interphase-link Constraints

‘ X° () = x°(t})
Wllink (X: ’le ,til ,tlf ) = t.|+1 = tlf

X () - (< (t})) 2 0

NLP Solver

g ASSembly
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The KKT Optimality Conditions

=Lagrangian function of the NLP problem:

L(xa, 1,

=According to Karush-Kuhn-Tucker first order optimality conditions:

w, v, 1, to, ty) =

aL
i,
5)¥
oL
aL
doo
L
aX ¢

=0

=0

=0

=0

p+1

J(xs,ua, to, ty, X5, X)) — Z Wk Z

k=0
p

_Zyiagixmusrtsj - wle + TP-I—IKE"

a=I[]

T

i=1

a8
ar
oL
t g
L
v
oL
dXg

=10

=0

=0

=0

gk (m)F (X (),

U(7:), 73) At/2 + gie(7:) X (73)]

- QII:{XS-: KE"-. to, tr)

-n
X
(%)
—
O
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O
m
P
=
m
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m
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=With transversality conditions: a8 9o P
axt — axr U Paxe
g 9o aT
U I E h =0

=Which are equivalent to the maximum prmuple transversallty conditions.
=sKKT Optimality conditions on controls and costates:

p+1

2 ka.gk( BF{Ji} Affs[ z,:l %f&{rﬂi} =0
k=0

OL(m:) At
2. ai}_ o(7i)

i=1 i=1

Ma

AL () N} as R aF{ ) At

= fa Ti) Zﬂz(angk{ ;}-I—Zwaga[

i=1
=|f one assumes that

G
=) fo(73) = ms 5 fu(rs) = 0

And

"Then one gets the integral formsfu (E oF 5,._;-)
of the optimality conditions: ou " ou "ou

to

ITVINILdO Y04 SNOILIANOD AY¥VSSIDIN ¥3IA¥Q LSHIS

-/:I(g—i—mﬁ %) dr =0
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Example: Minimum quadratic control with path constraints

sSimple linear system with minimization of the integral of the square of the
control action:
E f ey
to

minJ =
u

=Linear differential constraints = = v

U=
=Path constraint: 2_1<0
; t=tg
=Boundary conditions: ¥, = { .z: } o0 o= ,oq o
t=0 ty—1
Table 1. Node and Element Distribution
Upper limit Nodes per Element
1=0.25 states 3:3
controls 2:2
1=0.20 states 3:3:3:3
controls 2:2:2:2
1=0.10 states 4:1:4

controls 3:1:3

AITVINILdO Y04 SNOILIANOD AYVYSSIDIN ¥3IA¥(QO LSHi-
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FIRST ORDER NECESSARY CONDITIONS FOR OPTIMALIE

Ints

Minimum quadratic control with path constrai

Example

1.00

0.00

073 1.00

0.50
Time

Time

Lambda

I=0.25
I=0.10

O
A

- = - = 4

0.50 0.75 1.00
Time

0.23

0.00

0.25 0.50 0.75 1.00

0.00

Time
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FIRST ORDER NECESSARY CONDITIONS FOR OPTIMALIE

Ints

Minimum quadratic control with path constrai

Example

=]
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—i .rﬂ... ]
[ f_,/, [ “
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Wy .,,,/ A
=~ _ 1 e - 4
= - - - - === % - 4
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o= % =TT -1 <
- B e & 40 !
- — |4 1+ —
.}_
2 y
||||| - = - —a— .
o T - il Sl
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/ \.x_\x _ -~ I 4
f \
4 " b
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n”“ .-I
' F & = < 2
= = =]
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I o X
-
e N
| [ e
e i
erff.fa_ | =
v |
Ll 1 T
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i
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Discontinuity at the Boundaries

= From the theory of Delfour et al. 1981 on Galerkin methods for ODEs:
|(x" =) e < ch”||(x" — )|
"And a maximum convergence rate of:

|x* — x||oo = O(R**7)

L
[
-
>
O
>
O
-
=
—
<
N
—
X
>
—
rm
)
<

t

*Delfour also demonstrated the accuracy of FET developed on Gauss
Legendre, Radau and Lobatto points.
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Discontinuity at the Boundaries

= From the theory of Delfour et al. 1981 on Galerkin methods for ODEs:
|(x" =) e < ch”||(x" — )|
"And a maximum convergence rate of:

|x* — x||oo = O(R**7)

Gauss-Lobatto Nodes

Gauss-Legendre Nodes
1 0 T

—<—3 nodes, slope=6
——5 nodes, slope=10
10"+ —*—7 nodes, slope=14

Relative etror
—_
(=]

L
[
-
>
O
>
O
-
=
—
<
N
—
X
>
—
rm
)
<

8
=
g
z 10
% 10_15 | ) —<— 2 nodes, slope=2
[~ —*— 4 nodes, slope=6
10} —*— 6 nodes, slope=10
20 ‘
10 :
" S S 10” 10" 10°
10° > = o Step Size
10 StelOS' 1 0 Gauss-Legendre Nodes
p Size 10 : — ‘
sSimple double integrator: o
g
s}
210™"
&
&
107
10%
10’ 10° 10°

Number of Parameters
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Discontinuity at the Boundaries E
= The expected convergence of the discontinuity at the boundary is O(hP*?): Jg>
>
le”llee = lIx" = X[loo < ehPea|d"|oc 3
" <
FJIIII [ [ [ ST&'FSF-:-E :|
'Example _ ,|;14J| NNRRRRRRERENN <
o ) _ S i n it T Py e e W
E”'ptlcal orbit motion: E 5 B e Iy '—| . S8 N —@— 0.5Jump —
_';‘: |'_TI'*.||1|.|.|'}‘4|1| 1T 0.25 Ertor s
A NERSRR |||-i"rt|*|||| "' J_>|
E REREL TR S EN R A kAt A— 0.25 Jump m
3 A TRERNER '|:|_' TN |"| . —— 0125 Error )
&S NENEEREENE RN NN B onsnmp <

NERENERRL TN SRR h

ol

203 45 6 7 8§ 910111213

Fumber of Points

e _ g pe2

max |x¥| + 1

sTherefore one could use the following indicator ¢ =

o P
Eiri'_ hP—FE
i
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=Solve the following linear quadratic optimization problem:
N
. G432
min } (ry)
1

w ] T

h-p Adaptivity Strategies ,
<

- . i ippe2 - b

p-adaptivity € = c-;,hj- Ef,, — tol = ,:jrjth :(D>
4 =
. _ p+2)logh; —log(z) —
! log h; <
-
=h-adaptivity N
=Gijven the residual on the error at each element: "'i — tol — ci;h;’l ;—U|
P
_|
rm
)
_<

hy &=

= If the residuals are not zero, then all
N the elements with a nonzero residual
> hi=1 are split in two.
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Examples: Minimum Time to Orbit -+
<
=The problem is to minimize the time to reach a given altitude with a given g
velocity (Bryson and Ho 1979): | O
minty >
B 5
=\With the dynamic constraints: , —
=1 S
j=v =
it =acos[3(t) W
o = —g + asin 3(t) -
*And the boundary conditions: >
: m
* y—h = )

. u

il
'LI

% F If-='|:'

*"From Pontryagin maximum principle one gets the control law:

Ay
tlan IS = _L g3
.a'!'l. . Universityof 4"
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Examples: Minimum Time to Orbit

Table 2. Optimal Final Time for Different Mesh Grids

Mesh Grid NLP Parameters Feasibility Optimality

ADILIVYHLS ALIANILAVAY d-H

2:2:2:2 48 8.54166e-2  1.679041e-2
:d:3:3 68 3.73264e-2  2.115610e-3
4:4:4:4 58 1.28094e-2  3.854148e-4
5:5:5:5 108 9.5707%-3 4.162192e-5
6:6:6:6 128 1.37934e-3  7.136340e-5
[HHH 148 L.707T9e-3  B.372T63e-6
Adapted 118 8.20464e-4  8.363671e-b
" A.Il'lah""f.a|l ) ArlwaIylicaI | I I I x’f
; g g |+ DFET boUNArY | oo
10y " gigmpnd;w f_h 350 ° D:FETin?gp?afTw | | o
T N R 25
— B e R SR ST SIS _
E : : I A E
i d i . / o i J = 2
P 1.5
ot s imeend
1_..
[I._J - — -
_ | 0.5 | _
" 4 0 80 100 120 0 e i i i
Time [s] 0 20 40 60 80 100 120 4
Time [s] Universityof %0

Strathclyde
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Examples: Minimum Time to Orbit

Table 2. Optimal Final Time for Different Mesh Grids

01

Q.08

[kmis]

u

DO e 1 [ - -

Mesh Grid NLP Parameters

Feasibility

Optimality

2:2:2:2
3:3:3:3
4:4:4:4
LM M
G:6:6:6
(M

Adapted

=]

18
it
58
108
128
148
118

8.54166e-2
3.73264e-2
1.28994e-2
9.57079%-3
1.37934e-3
1.70779%-3
8.26464e-4

1.679041e-2
2.118610e-3
3.854148e-4
4.162192e-5
7.136340e-5
8.372763e-6
8.363671e-0

T T T T —
— Analytical : A

+  DFET boundary | ¢ oA
- DFET intermal | i :

20 40 60 Bl 100
Time [s]

120

0.2

+

— Anakylical

DFET boundary

- DFETintemal | @ "%

L 5
H : r 1 :
) v |
= H A !
[ Y
A : I
tA : : 1
. -
r

20 A0 60 80 100

Time [5]

120

02/09/2012
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Examples: Step-by-Step Adaptation Process

14 ; ; ; ; ; 0.04

0.0k ,__ S S N

0.r ...__ ._..'

1101 =] AN i

0035

! ! ! ! !
S

\'fﬁféﬁﬁﬁfﬁfﬁfﬁéﬁfﬂﬁﬁfﬁf

T
[
-
>
O
>
BY,
-
=
—
<
Wn
—
X
>
—
rm
)
<

Element
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Examples: Step-by-Step Adaptation Process

L e =

T
[
-
>
O
>
BY,
-
=
—
<
Wn
—
X
>
—
rm
)
<

H H £ ;
Y SN S0 TP P 08~ ; : ; £
i i i I i ; ;

soubats)
cosifj)

u_:________________E_ . ‘f‘r_______________?________ \' : o 0.2_...............;...............E.............. i.z...............:.........::‘. ..;........ Jp—

o ; i i i i 1 " w w @
Time |y Time [s]
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Robust Control (730
ve)

=Given a solution of the NLP problem, one has C(x)=0. 8
=By linearizing in a neighbourhood of x one can get: —
(AU, ) O

A7) l:",[.ri v C.T; A7) G.T_-;- v C.T 7 A }:a m

0 Vs 0 V0Og |[{ ,x (=9 g

VG, 0 0 0 | AX, -

=\Where the matrix is the Jacobian of the constraints whose components are
the gradients with respect to states and controls.

=If the uncertainty on the initial state is given and no variation on the final
state is required, one can solve the following linear quadratic optimisation
problem:

n;liJn%AUTAU

st.

J, AU +J,AX, +J,AX, =0

AX, =5; AX, =0

Strathcl @
Glasgow Yd
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Transition Matrix

If the control is considered to be fixed, the Jacobian matrix can be used
to derive the state transition matrix from initial states to final states:

S, 0 0 Ax AX,;
S, S, 0 o 0
0 S. S e
of fo .
AX
0 0 S, o | AX; |

Starting from the bottom of the matrix one can compute:

And then proceed with:: AXy = SrAX,,
. -1 ;
AX,, = —58;'S.;AX .,
AX. =-58.'58,AX.;
Up to: AX., = S 'AX;
with AXy = TAX,;.

T = —5157, S0 S0 SioS;

02/09/2012
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Some References

e Vasile M. Finite elements in Time: A Direct Transcription Method for
Optimal Control Problems. AAS, Astrodynamics Specialist Conference,
Toronto 1-5 August 2010.
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GAUSS PSEUDO-SPECTRAL METHODS (GPSM)

9/2/2012



Pseudo-spectral Transcription

Consider again the differential equations:

X-F(x,u,t)=0

And the polynomial representation of states and controls:

(-3 ol

With the first derivatives:

X = Zp: f (t)X,
s=1

Let’'s assume now that the nodes x are chosen to be the zeros t, of

orthogonal polynomial, like Legendre polynomials, in the interval [-1,1].

Then f(t) is different from zero at each t=r
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>
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Pseudo-spectral Transcription

Then we can collocate the differential equations as follows:

o At
> D, % —F(x,,u,,7)—=0; s=1..,M
k=0 2

Now consider the stong integral form:

X(t, ) =X(t,) + j F(x,u,t)dt

And assume the integral term is integrated numerically with a Gauss
guadrature formula:

M At
x(t,) =x(t,) + ZGSF(XS,US,TS)?
s=1

Then one can choose a Lagrange interpolating polynomial that
interpolates X, plus the M Gauss points X, to represent the states (the
controls repsectively).
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Pseudo-spectral Transcription

The complete set of equations becomes:

M
> D, %, —F(x,, U, r)ﬁzo; s=1,.,M
k=0 | 2

M
Ko x(t) =x(t) + Yo F (U, 7))
s=1

SAOHLIN 1V¥LD3dS-0dN3ISd SSNVO

|

Strathclyde
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Pseudo-spectral Transcription

The controls are collocated only at the Gauss points:

M
> D, %, —F(x,, U, r)ﬁzo;
k=0 | 2

M
Ko x(t) =x(t) + Yo F (U, 7))
s=1

|

SAOHLIN 1V¥LD3dS-0dN3ISd SSNVO
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Multiple Phases Pseudo-spectral Transcription

As for DFET one can partition the time domain in segments and use a PS
transcription on each segment:

A
X

Gauss N
Point

v

It is now clear that in order to restore the continuity from one segment to
the next one has to add a matching condition:

Xj+1(tf,j+1)=Xj(t0,j); J_ +1 Ngggment -1

tf,j+1=t0,j

€))
>
c
n
n
o
n
m
c
O
@)
1
Vg
o
m
(@)
_|
=0
>
—
m
_|
I
®)
O
n

The matching condition restores the continuity on the states but not on the
control that can remain discontinuous.
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Some References

Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V., "Direct
Trajectory Optimization and Costate Estimation via an Orthogonal
Collocation Method," Journal of Guidance, Control and Dynamics, Vol. 29,
No. 6, November—December, 2006, pp. 1435-1440

Benson, D. A., A Gauss Pseudospectral Transcription for Optimal Control,
Ph.D. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts
Institute of Technology, November 2004.
http://dspace.mit.edu/handle/1721.1/28919

Huntington, G. T., Advancement and Analysis of a Gauss Pseudospectral
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http://dspace.mit.edu/handle/1721.1/42180
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BASICS OF NONLINEAR PROGRAMMING
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Simple 1D Newton Method

*Find x* solution of the nonlinear problem c(x*)=0
*Given a first guess x and a linear expansion of ¢ in x

c(X) =zc(X)+—= dC(X)

(X=X)

The value of x is updated with the Newton’s step p given by

X=X-— de(x) c(X)=Xx+p
dx

-1

*Quadratic convergence if ceCland ¢, #0
*Problem: computing the derivative of c
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Simple 1D Minimisation

*Find x that minimises F(x)
*Given a value X, the function F is expanded up to the second order:

F(X) = F(x)+ F'(x)(>_<—x)+%(>_<—X)F"(x)(>_<—x)

First order necessary condition is to have:

dF (X)
dx

Sufficient condition for optimality

F''(X) >0

=F'(X)=0=F'(x)+F"(X)(X-X)

Strathc
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Newton’s method in N dimensions

Find the vector x=[x,,...,x,]" such that:
¢, (X)
cx)=| : |=0

.00

X=X+p

ONIWNVYEDOHd HYANITNON 40 SDO|ISV 4

Gp=—C

where G is the Jacobian matrix of nonlinear functions ¢



Newton’s method for minimisation in N dimensions

*Find X=[Xy,...,X,]" that minimises F(x):

First order necessary conditions for optimality

i e
X)=—
d,(x) ax,

| dF
X) =——
d,(x) dx

Where H is the Hessiana matrix of F

ONIWNVYEDOHd HYANITNON 40 SDO|ISV 4



Approximation of the Hessian and Jacobian matrix

*Build an estimate B* of matrix B:

B* =B +h(Ac, AX)
(Ac — BAX)AX'

h =
AX' AX

Update the Hessian matrix with the BFGS (Broyden-Fletcher-
Goldfarb-Shanno) formula:

BAXAX' B
AX' BAX

In this case the convergence is no more quadratic but superlinear

h =

Strathclyde
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Constrained optimisation: Equality Constraints

find x that minimises F(x) subject to:

c(x)=0
A scalar function called Lagrangian is defined as;

L(x,2) =F(X)—A"¢(x) = F(x) - Zﬂ/c

First order necessari conditions for optimality (Kuhn Tuker):

V,L=g-G'A=VF-> 4,Vc, =0

Suffcicient condition for optimality is that the Hessian of the L is:
T
v Hv>0

ONIWNVYEDOHd HYANITNON 40 SDO|ISV 4
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Constrained optimisation: Equality Constraints

i e

Equivalent necessary condition is that the projection of the gradient of the
function F on the constraint is zero: ZTg ~0

o

>

2

o

Minimise: X2 4 g O
F(X)=X +X5 1 -
Subject to S
B B ZT g VC* p—
c(xX)=x, +X,—-2=0 =
And solution g
X =(11) %

At the solution point 2
>

<

=

=

()

Equivalent sufficient condition is that the projection of the Hessiana is
positive defined:

Z'H,Z
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Constrained optimisation: Inequality Constraints

*Find x that minimises F(x) subject to:

c(x)=>0

For x=x*:
*Some constraints are equal to zero

C.(x) =0 fori e Al.e. belongs totheactive set
*Others are strictly satisfied

C.(x) >0 fori e A'l.e. belong totheset of inactive constraints

Necessari condition for optimality is that lagrangian multipliers at the solution
are:

A >0
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Constrained optimisation: Inequality Constraints

*Two different approaches:
sactive set method
Interior point method

Active Set
This methods looks for the active set at every optimisation step

Interior Point
Inequality constraints are penalised in the objective function

through a barrier function dependent on a penality parameter .

F(X)+ uInc(x)

The solution is forced to stay within the feasible region by the
barrier function Inc(x)
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Constrained optimisation: The K-T system

The solution of the constrained optimisation problem satisfies the following

first ord ditions: !
Irst oraer conditions L(X,i,/,l) _ F(X) —ﬂTCe (X) —,LlTCI (X)

V.L=g-GIA1-G u=0
V,L=—,(X)=0

V. L=-(x)=0

u=>0

Slack variables are introduced to insert inequality
constraints as equality constraints:

L(x,7,5) = F(x)—7"[c(x) -]

vs)
>
w
O
wn
®)
=
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=
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m
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@)
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>
<
=
pa
@

s> Vi=-—(y)=0
b, 2y={x}2b,
S
n=>0 Strathclyde
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Constrained optimisation: The K-T system

*The direction of steepest descent is computed solving the K-T system:

H|_ GT P . _g+GT77
G 0 || C
p = [dx,ds] ds =G dx+(c—s)

*The solution of the K-T system gives the direction of steepest
descent and the step. The step length is corrected by a factor a:

T = +a

n| \n S
*The value « is such that the bounds on slacks s and
unknowns x are not violated
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Sequential Quadratic Programming

Given the quadratic objective function

1
g' X+=Xx"Hx
2
Subject to linear constraints

AxX=>D

Solution method: starting from a first guess x° and an estimate of the
active set A°

1)at step k solve the K-T system with the constraints in Ak as equalities
2)Maximum step length along the direction p which does not violate active
constraints

3) if the step crosses on inactive constraints the step is reduced and the
constraint is inserted among active constraints, then go to step 1 otherwise
check the sign of the associated lagrangian multipliers

4) If all the multiplier are positive then stop, otherwise if erase from the active
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Minimise
Step X1 X2 Active set
2 2
F(X) =X +X,
_ 0 4 0 A’={c,}
Subject to
2 1 2.77 1.85 A>=-5.53 erase c,
C,(X)=4-% 3% 20 2 12 0.8 =05 add c;
c,(X)=x +%X,—22>0 3 1 1 A'={ci}




The merit function

Robustness of convergence: local convergence must be
acchieved from every starting point in the solution space:

M(x,4,5)=F -1 (c—s) +%(c—5)T [I(c—s)  Betts 2000

where IT is a weight matrix

Unidimensional minimisation in the direction of steepest desce
using a quadratic or cubic model modello of the merit function:

|
Xl
|

A=

%]

NOTICE!

Speed of convergence and robustness improve if Jacobian ed Hessin
are analytical

X
A
S

+

>

min M(x,4,5)=M(x)
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Direct Finite Element Transcription (DFET)

BepiColombo

*3000 variables and
constraints for the NLP
problem

¢4 to 7 swingbys
eresonant orbits

emore than 20 switching
points

—
Q
3
—t
=2
-
c
@
—
<
=
=3

1
)
D
<.

<
>
0
28
®
—t
_l
-

2,
)
o
—t
o
=
)
7

University of ‘%ﬁ}f})

Strathclyde
Glasgow




e 83

Direct Finite Element Transcription (DFET)

K ' DITAN momefVasile/Prometeo/ditany/bepicapfstate—cap.datl - 0 00 00T
Fle Windows Edit View Options

Earth-Europa Transfer  zosaos o)+ «fee ]

e 6000-7000 variables
and constraints for
the NLP problem

e 14 swingbys
e resonant orbits
e variable thrust

e Variable reference
frames

soll010alel] 1SISSY AlARIO-NINIA 1ISNIYI-MOT]

To
TogglePlot: sekting plot {Blot 4}
i ot 4}°

TogglePlot: setting plot °{Plot
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Direct Finite Element Transcription (DFET)

WSB Transfers

File Windows Edit View Options ugpl’g

Blagae | o= =f=l-]0

e 1000-1500 variables and
constraints

e Highly nonlinear and
unstable dynamics

e Impulsive manoeuvres
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Equations of Motion

a
= Non-singular Equinoctial elements: P =e-sin(Q+ o)
1

= No singularities for zero-inclination P, =e-cos(Q+w)

_ i .
and zero-eccentricity orbits. X=1 Q=tan ESIH Q

i
Q, =tan EcosQ

L:(Q+a))+.9

= Gauss planetary equations in Equinoctial elements, under a perturbing acceleration € in

the r-t-h frame:
da _2a’
dt h

[(P2 sinL — P, cos L)gcosﬂcosa+£gcosﬂsin a}
r
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% =%{—£cos L-gcosﬂcosa+|:Pl+[1+£)sin L}gcosﬂsina— P,(Q,cosL —Q,sin L)gsinﬂ}
r r

_dd|:2 :%{—?COSL-&‘COSﬁCOSa+|:P2 +[1+$jsin L}?COSﬂSina— F(Q,cosL —-Q;sin L)gsinﬁ}
_dcgl = 2—rh(1+ Q7 +Q22)Sin L-esing

dQ _r 2 2 i

d—tZ_%(1+Q1 +Q})cosL-&sin B

(:Ij_lt‘: %—%(QlcosL—stinL)gsinﬂ
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Low Thrust Two-Points Boundary Value Problem =
t =

= Obijective: f
jective min AV = [« (t)dt o

u

t, . EI
= Where the control vector u is: u=[e(t),alt), )] C
= Satisfying Gauss’ Planetary Equations and the boundary constraints: £
X(to) = Xo ;
S <
X(tf ) = Xy rm
L
and with: g(t) S gmax m
Aecurmbtions. <
= Assumptions: m
=z
= Perturbing acceleration € is very small compared to the local gravitational ;l,

acceleration:

6‘<<£2

I

= Constant modulus and direction in the radial-tangential reference frame.

[,a, B]=const

—
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From Time to True Longitude

= A system of differential equations in time is translated into a system of
differential equations in true longitude:

G=fXLéeaf) mahp %=f(XLsap)

= |tis possible to rewrite Gauss Planetary Equations with respect to
Longitude by applying the chain rule:

d d dt
dL dL  dtdL

= Where dt , with the hypothesis of small, constant, perturbing
acceleration:

A ororgrg=n
dt r

= Thus obtaining also the time equation:

dt  r’> h® MW@

d. h (1+PsinL+P,cosL)’ Surathclyde
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First order expansion of Equations of Motion (1)

= The aim is that of obtaining a first-order expansion of the variation of

Equinoctial elements in the form with respect to a reference orbit:
X=X, +eX,

= With the manipulations described above, one obtains a set of

equations in the form:
X'=X,"+eX,'

= Which could be integrated between L, and L.
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Excursus on Perturbation Theory

= Consider the following example:

X =—X+&X’
= And the first order expanded solution: X=Xy +EX
X=X, +&X
X=X, +eX
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If this expanded solution is substituted in the original equation one gets:

.s .s 2
Xo + X ==X, — X + (X, + X))

.. o 2 2 2.2
Xo +EX ==Xy — EX + EXy + 27X X + E°X]
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Excursus on Perturbation Theory

= Now assuming we are interested only in first order terms we can

collect terms with similar order of ¢:

T 2

X, ==X+ X,
The first equation is a simple harmonic oscillator and once its solution is
substituted in the second equation one has a simple harmonic oscillator

with periodic forcing term.
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First order expansion of Equations of Motion (2)

Is

= A first order expansion could be obtained by simply integrating the ODEs with respect

to L, which could be done in closed form.

= This requires finding the primitives of the integrals in the form:

Le 1
(L. )= dL
(L) Lﬂ (1+P,sin L+ P, cosL)’
Le cos L
. (L. )= dL
(be)=], (1+PsinL+P,cosL)’
(L) = L sinL dL

"L (14 Py sin L+ Py cosL)’
= For example:

L sin L
L) = dL =
(L=, (L+ PB,sin L + P, cos L)

P |n[(\/|=>1§ + P2 —1 — Plo)cos L+(P —D)sinL +JPR2+P2 —1—
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(|31(2) + P53 _1)3/2

Po In[(\/F’lg + P2 —1 — Plo)cos L+(1—Py)sinL+JR2+P2 —1+ Ploj
_'_

(B3 +Po —1)""
(P +1)cos L +RBgsinL + P, +1

(R2+P3 —1)(PocosL +R,sinL +1)
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Analytical Solution of the Equations of Motion

= Thus the first order approximate solution of perturbed Keplerian motion takes the

form:

a(L) = a, +£a, = a, + & {2h7a} cos B cosa [Pyl ,, (Ly, L) — Pl (Lo, L) ]+ 22h¢ag cos Bsinal,, (L, L)}
P(L)=R,+¢&R;
P,(L) =P,y + &P,
Q (L) =Q, +&Qy,

Q, (L) =Qy +£Qy
t(L) =t, +&t;

= A complete set of analytic equations parameterised on the Longitude is thus available
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to propagate the perturbed orbital motion, in the form:

X(L, +4L) = f (X(L, ), AL, &, cx, B)
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Some remarks on dCCuracy

The accuracy of the approximation is dependent on:

= The ratio between the local gravitational acceleration and the perturbation. Thus:

= Error increases according to the thrust level 2 works better with small

thrust magnitude (<1 N).

= Error increases with the distance from the central body = works better very

close to the attractor.

= The amplitude of the trajectory arc. Error increases superlinearly with the

amplitude of the propagation interval.

Tests have revealed that in most practical applications thrust and local gravitational

force still present a favourable ratio.

The error in amplitude is mitigated by dividing a single arc into sub-arcs of smaller

amplitude.
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FPET method

= A Direct Transcription Method based on Finite Perturbed Elements in
Time (FPET) has been designed using the Perturbative approach.

= Each transfer trajectory is divided into n subarcs:
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Backward Forward
= Amplitude of arcis AL. propagation Re;f)rif]rt'ce propagation
= Perturbed motion propagated / i \
using analytical solution. Lower boundary Upper boundary
= Constant thrust vector in the r- point X+ point
t-h reference frame. m
= Reference node for propagation /\ &
is the midpoint of the arc. | |
= Motion is propagated |
analytically backwards and AL
forwards by i% from the
midpoint to obtain boundary . AL
nodes. (better accuracy X" =f (Xm,—,g,a,ﬂj
compared to a single sided ] 2
propagation) X = f (xm’_%'-’gia’ﬁj
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FPET method

The subarcs are then matched to each
other at the boundaries to obtain the
complete trajectory.

Conceptually similar to Sims &
Flanagan Direct Transcription Method
which used Keplerian arcs with AV
discontinuities at the boundaries.

In the FPET method, thrust is
continuous, albeit constant within each
element.

In both cases, orbit propagation is analytical.

- Continuous thrust

1
®

Boundary/Match point

Reference node
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Accuracy and CPU time (1)

To assess accuracy and CPU cost, orbital motion under constant thrust was
propagated within a given time interval.

A range of values for the number sub-arcs was considered.

Accuracy was calculated in terms of relative error on final state with respect to
numerical integration of the exact equations of motion.

CASE 1, Heliocentric orbital motion: = 0.5 N continuous thrust on a 2000 kg
spacecraft. €=2.5 10> m/s?

= Departure from Earth.
= 1.5 vyears.

Accuracy: error on final state

0 ————— . CPU cost
3 =2 P 3 ——FPET 10 T ) T L
——~—Modified Euler o0del13
0 i T R —==FPET Lo
1T 0 T s A — —-Modified Euler | | |
: 0 TEIE 2 2
5 T A0 [omss bundisanie i shi o a
5 : : 2
7] 2 >
2 107 i g
g 2 5 =t
V)
1 E =)
4 OIO b oceign ngd
10 ...........
-6 s - oD .4
10 L L 10 5 S i P % F i ¢ B s
2 3
10' 10 10 10° 10" 10° 10° 10°
OppET DepET
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The LT Boundary problem with FPET

CASE 2, Geocentric orbital motion:

Accuracy: error on final state

: i i:!|——FPET

Relative error

10 10° 10° 10"
Oppgr

= 0.5 N continuous thrust on a 2000 kg
spacecraft. €=2.5 10> m/s?

= Departure from LEO

= 5 days (=50 revolutions).

CPU cost

CPU Time [sec]

10 10° 10° 10*

Opppr

FPET method is 2 orders of magnitude faster than numerical integration.

Even with few elements per revolution, accuracy is high for geocentric orbits.

In heliocentric orbits, accuracy is still adequate.

The FPET method is particularly advantageous with a relatively low number of

sub-arcs.
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The Low Thrust Two-Points Boundary Value Problem with FPET

= The FPET transcription method is used to solve the LT boundary
problem:

mind = gt < Total AV

=1

Departure conditions

—

0 - Inter-element
matching

1=2,...,Nper =17 =0
XnFPET—Xf\\ conditions
< | < Arrival conditions
i=1 \

g <& ,i=1.. . N Fixed time of flight

st.C_ =< X' = X_

eq i i+1?
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= Decision variables for each of the n FPET: Upper bounds on acceleration

= Position of the reference point (5 scalars).
= Acceleration magnitude, azimuth and elevation (3 scalars).
= 8n decision variables and 5(n+1)+1 scalar constraints.
= The problem is efficiently solve with a gradient-based local optimizer

(fmincon active-set). @
Universityof
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Earth-Mars Direct transfer (1)

= Boundary problem:

= Departure from Earth at 5600 MJD2000.

= Rendezvous with Mars after a transfer time of 3 years.
= 2 complete revolutions.

= Maximum acceleration: 2.5 10> m/s2.

= 40 FPET.

= |nitial guess for the local optimizer: constant thrust profile.
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Earth-Mars Direct transfer (2)

= Results:

- 108 Tra_|ectory

= Total AV: 5.63 km/s. | _______ ________________ _____________

= Relative error 10-3.

= Solution found with ; | ; 5 ;
DITAN: 5.71 km/s. O3l — o Ak

y [km]

n Hohmann Transfer: 5.49 1 ........... >
km/S. | D — , .......... e . 2 . e . ................ .

2
x10°

<10 Acceleration modulus Acceleration azimuth Acceleration elevation

_ ............... .............. ....... "'“LL,_ __ _ _,__
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P [deg]

; ; ; ; i i ; ; ; i : " ‘ i '
0 200 400 600 800 1000 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
t [days] t [days] t [days]
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Earth-Mars Direct transfer: Multi-Objective Problem (1)

= Bi-objective optimization problem: AV and Time of Flight are

minimised.
Lower Upper
T, [MJD2000] 5000 5779.94
ToF [days] 100 1500
n 1 3

rev

= Each time to objective function is called, a boundary problem needs
to be solved.

= Solved with EPIC, a hybrid-memethic stochastic optimizer.

= 8000 function evaluations.
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Earth-Mars Direct transfer: Multi-Objective Problem (2)

= Bi-objective optimization problem: AV and Time of Flight are
minimised.

Solutions in the objective space
1400 (+ T

Solutions in the parameter space

| — — e e ] 2 et

—
[}
[=}
[=}

ToF [days]
n

>
(==}
(=}

5800
5600

% i : . :
600-: ................. ................. ................. ................ i 1000 :
5400

.
l *oe 0 + 5 + : + . : .

400 : i i i ToF [days] 0 5000 T, [MID2000]
5.6 5.8 6 6.2 6.4 6.6
AV [km/s] Solutions in the objective space
1400 T
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