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OPTIMAL CONTROL 



Optimal Control Problem 

Minimise: 
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Subject to a set of differential constraints 

Boundary constraints 



Example of Optimal Control Problem 

Minimise: 
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Pontryagin Maximum Principle 

Consider the optimal control problem: 

 

 

 

 

If                                              is optimal, with response                        , being                    
and       the spaces of piecewise continuous and piecewise continuous and 
differentiable functions respectively. Then, there exist                                         
and               such that:      
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First Order Necessary Optimality Conditions 

Euler-Lagrange Equations: 

 

 

with optimality condition 

 

 

and transfersality conditions: 

 

 

 

 

First order conditions only guarantee that the solution is locally stationary. 

 

Legendre-Clebsch Condition: 
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Example 2: quadratic control 

Minimise 

 

 

Subject to: 

 

With boundary conditions: 

 

9/2/2012 
O

P
T

IM
A

L C
O

N
T

R
O

L 

0

21
 

2

ft

t

J u dt 

x v

v x u



  

0

0

( ) 1

( ) 0

( ) 0

( ) 0

f

f

x t

v t

x t

v t











Example 2: quadratic control 

Hamiltonian 

 

with adjoint equations: 

 

 

optimality condition: 

 

 

And transversality conditions: 

 

 

From the adjoint equations and the optimal control condition we get: 
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Example 2: quadratic control 

and if one replaces the control law into the dynamic equation: 

 

 

which is a harmonic oscillator with a periodic forcing term: 

 

The solution is of the form: 

 

 

And the four constants can be determined so that the boundary conditions 
are satisfied. 
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Optimal Control Problem with Mixed Path Constraints 

Consider the optimal control problem: 

 

 

 

 

 

 

 

 Form the Lagrangian: 

 

 

 

 

 

 with Lagrangian multipliers m 
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Maximum Principle with Maxed Path Constraints 

If                                              is optimal, with response                        , being                    
and       the spaces of piecewise continuous and piecewise continuous and 
differentiable functions respectively. Then, there exist                                      ,                                  
  and                such that:      
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First Order Necessary Optimality Conditions with Mixed Path Constraints  

Euler-Lagrange equations: 

 

 

 

 

with Optimality condition: 

 

 

 

 

 

 

and second order condition: 
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Transversality conditions 
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Example of  Solution 

The extended Hamiltonian is 

 

 

where only one of the two conditions on the thrust is true at any one time. 
The dynamic equations are: 

 

 

 

 

 

and the adjoint equations are: 
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Example of  Solution 

The optimal control condition writes 

 

 

where again only one of the two m is true at any one time, and the 
transversality conditions are: 

 

 

 

If one looks at the optimality condition  can define the switching function 
as: 
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Treatment of Singular Arcs 

Along singular arcs we have that: 

 

 

Is satisfied for any admissible control. A solution is to differentiate a 
minimum of p times  with respect to time until one obtains: 

 

 

 

 

 

The second equation provides the required control law while p-1 is the 
order of the singular arc. 
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Optimal Control Problem with State Path Constraints 

Consider the optimal control problem: 

 

 

 

 

 

 

 In this case the path constraint can not be directly used to form a Lagrangian 
function. In fact suppose that G≥0 is a path  constraint on the position. This 
constraint does not provide any information on the velocity and acceleration 
at the contact point G=0. As a consequence there is no information on the 
correct control to be applied. This is particularly important when pure state 
path constraints are introduced via a direct approach. 

 The correct way to introduce a pure state path constraint is to differentiate 
p times with respect to time till the control appears explicitly: 
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Optimal Control Problem with State Path Constraints 

Once the control appears explicitly in the constraints, one can form the 
Lagrangian (indirect adjoining approach): 

 

 

 

 

For example for p=1 and G≥0 one has: 

 

 

 

:At a contact point t the second constraints causes a discontinuity in 
adjoint variables and Hamiltonian: 

 

 

 

with q another Lagrange multiplier 
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Maximum Principle with State Path Constraints 
If                                              is optimal, with response                        , being                    
and       the spaces of piecewise continuous and piecewise continuous and 
differentiable functions respectively. Then, there exist                                      ,                                  
  ,     , and                  such that:      
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Direct Finite Element Transcription (DFET) 

 Strong solution of the differential equations: 

 

 

 

 Weak solution of the differential equations: 

 

 

 

 The solution x and control u satisfy the differential equations in a weak 
sense, i.e. with respect to the test functions w. 

 

 Boundary conditions are not exactly satisfied but are satisfied with 
respect to the test functions w.  
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Direct Finite Element Transcription (DFET) 

 Strong vs. Weak solution of the differential equations: 
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Direct Finite Element Transcription (DFET) 

 Partial integration of the differential terms: 

 

 

 

 

 

 

 

 

 

 

 

 The integral can be solved by polynomial representation of the states x, 
control u and test functions w and Gauss quadrature. 

 The choice of the test function w can be such that the projection is 
orthogonal.  
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Direct Finite Element Transcription (DFET) 

 

 

 

 Polynomial representation of x, u and w: 

 

 

 

 

 Where xs, us and ws are discrete nodes and fs and gs are polynomials of 
order p-1 and p respectively.   

 Note that in principle fs and gs can be any arbitrary function generated 
on any arbitrary base. 
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Direct Finite Element Transcription (DFET) 

 

 

 

 The equation must hold true for any arbitrary ws , hence: 
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Direct Finite Element Transcription (DFET) 

 Now assume we wanted to use Gauss quadrature formulas to solve the 
integrals, then we would have: 

 

 

 

 

 

 

 

 

 

 

 

 Where tk are Gauss points and tk are Gauss weights.   
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Direct Finite Element Transcription (DFET) 
 Discretised Weak solution of the differential equations: 
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Example of DFET Integration 
 Let us consider the simple linear system with a constant u: 

 

 

 

 In weak form we can write: 

 

 

 

 And assume we use polynomials of order 0 for states and controls and 
of order 1 for the test functions: 
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Example of DFET Integration 
 The weak solution becomes: 

 

 

 

 Because they need to be true for any arbitrary weight w we can derive 
the two equations: 

 

 

 

 

 

 We can now take Gauss integration formulas to solve the integral: 
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Example of DFET Integration 
 The Gauss weight for a single point is equal to 2, therefore we have: 

 

 

 

 

 

 

 And if we sum the second to the first we get: 

 

 

 

 

 

 Note that for nonlinear function this is an implicit scheme. 
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Direct Finite Element Transcription (DFET) 

 
 
 
 
 
 
 
 

• The Time domain is decomposed in finite elements leading to a 
polynomial development of the solution on spectral basis (Gauss Points) 
 

• Differential constraints are expressed in weak form leading to 
discontinuities at boundaries 
 
 

• Gauss formulas for the solution of the integral: high Integration order 2n 
= 2k+2 
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Direct Finite Element Transcription (DFET) 

 

 

 

 

 

 

 

 

• The controls are discretised using the Guass points used for integration. 

• The controls can be discontinuous at the boundaries. 

 

• The integration error within an element is absorbed into the discontinuity at the 
boundaries. 
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DFET in Summary 

 Representation of controls, states and weights on spectral basis. 

 

 

 

 

 

 

 Same bases for the discretisation of objective function and algebraic constraints: 

 

 

 

 

 

 Differential equations are transformed into algebraic equations: 
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DFET Assembling Process 

 : 
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The end boundary node of one element 

must be equal to the beginning boundary 

node of the following element 

The last equation of one element 

is matched to the first equation of 

the following element. 

Boundary nodes disappear except 

for the two extremal nodes  



Example of DFET Assembly 
 Assume we have two elements: 

 

 

 

 

 

 

 The end of the first element must be equal to the beginning of 
element 2: 
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Direct Finite Element Transcription (DFET) 

 The optimal control problem is transformed into a nonlinear 
programming problem 
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Direct Finite Element Transcription (DFET) 
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Multi-Phase DFET 

 Discontinuous states can be inserted at the boundary of two phases. 

 The end states of one phase are matched to the beginning states of another phase through 
some interphase constraints or... 

 …phases can be in parallel. 
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 The KKT Optimality Conditions 

Lagrangian function of the NLP problem: 

 

 

 

 

According to Karush-Kuhn-Tucker first order optimality conditions: 
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With transversality conditions: 

 

 

Which are equivalent to the maximum principle transversality conditions. 

KKT Optimality conditions on controls and costates: 

 

 

 

 

If one assumes that: 

 

And 

 

Then one gets the integral forms 
of the optimality conditions: 
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 Example: Minimum quadratic control with path constraints 

Simple linear system with minimization of the integral of the square of the 
control action:  

 

Linear differential constraints 

 

Path constraint: 

 

Boundary conditions: 
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 Example: Minimum quadratic control with path constraints 
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 Example: Minimum quadratic control with path constraints 
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 Discontinuity at the Boundaries 

 From the theory of Delfour et al. 1981 on Galerkin methods for ODEs: 

 

And a maximum convergence rate of: 

 

 

 

 

 

 

 

 

 

 

Delfour also demonstrated the accuracy of FET developed on Gauss 
Legendre, Radau and Lobatto points. 
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 Discontinuity at the Boundaries 

 From the theory of Delfour et al. 1981 on Galerkin methods for ODEs: 

 

And a maximum convergence rate of: 

 

 

 

 

 

 

 

 

Simple double integrator: 
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 Discontinuity at the Boundaries 

 The expected convergence of the discontinuity at the boundary is O(hp+2): 

 

 

Example 

Elliptical orbit motion: 

 

 

 

 

 

 

Therefore one could use the following indicator: 
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 h-p Adaptivity Strategies 

p-adaptivity 

 

 

 

 

h-adaptivity  

Given the residual on the error at each element: 

 

Solve the following linear quadratic optimization problem: 
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If the residuals are not zero, then all 

the elements with a nonzero residual 

are split in two. 



H
-P A

D
A

P
T

IV
IT

Y S
T

R
A

T
E

G
Y 

 Examples: Minimum Time to Orbit 

The problem is to minimize the time to reach a given altitude with a given 
velocity (Bryson and Ho 1979): 

 

With the dynamic constraints: 

 

 

 

And the boundary conditions: 

 

 

 

 

From Pontryagin maximum principle one gets the control law: 
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 Examples: Minimum Time to Orbit 
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 Examples: Minimum Time to Orbit 
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 Examples: Step-by-Step Adaptation Process 
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 Examples: Step-by-Step Adaptation Process 
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Given a solution of the NLP problem, one has C(x)=0. 

By linearizing in a neighbourhood of x one can get: 

 

 

 

 

Where the matrix is the Jacobian of the constraints whose components are 
the gradients with respect to states and controls. 

If the uncertainty on the initial state is given and no variation on the final 
state is required, one can solve the following linear quadratic optimisation 
problem: 
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 Robust Control 
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 If the control is considered to be fixed, the Jacobian matrix can be used 
to derive the state transition matrix from initial states to final states: 

 

 

 

 

 Starting from the bottom of the matrix one can compute: 

 

 And then proceed with:: 
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 Transition Matrix  
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• Vasile M. Finite elements in Time: A Direct Transcription Method for 
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GAUSS PSEUDO-SPECTRAL METHODS (GPSM) 



Consider again the differential equations: 

And the polynomial representation of states and controls: 
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Let’s assume now that the nodes xs are chosen to be the zeros ts of 

orthogonal polynomial, like Legendre polynomials, in the interval [-1,1].  

 

Then f(t) is different from zero at each t=ts .  
 



Then we can collocate the differential equations as follows: 

Now consider the stong integral form: 

G
A

U
S

S P
S

E
U

D
O

-S
P

E
C

T
R

A
L M

E
T

H
O

D
S 

Pseudo-spectral Transcription 

,

0

( , , ) 0;     s 1,...,
2

M

s k k s s s

k

t
D Mt




   x F x u

And assume the integral term is integrated numerically with a Gauss 

quadrature formula: 

Then one can choose a Lagrange interpolating polynomial that 

interpolates x0 plus the M Gauss points xs to represent the states (the 

controls repsectively). 
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The complete set of equations becomes: 
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Spectral basis: Gauss points used for integration and discretisation 



The controls are collocated only at the Gauss points: 
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Spectral basis: Gauss points used for integration and discretisation 



As for DFET one can partition the time domain in segments and use a PS 

transcription on each segment: 

G
A

U
S

S P
S

E
U

D
O

-S
P

E
C

T
R

A
L M

E
T

H
O

D
S 

Multiple Phases Pseudo-spectral Transcription 

1 , 1 0,

, 1 0,

( ) ( );     1,..., 1j f j j j segment

f j j

t t j n

t t

 



  



x x

t 

x 

t 

xs 

xf 

xi 

ts 

Gauss 

Point 

It is now clear that in order to restore the continuity from one segment to 

the next one has to add a matching condition: 

The matching condition restores the continuity on the states but not on the 

control that can remain discontinuous. 
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BASICS OF NONLINEAR PROGRAMMING 



•Find x* solution of the nonlinear problem c(x*)=0 

•Given a first guess x and a linear expansion of c in x 
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•Quadratic convergence if cC1and cxx0 

•Problem: computing the derivative of c  

The value of x is updated with the Newton’s step p given by 
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Simple 1D Newton Method 



•Find x that minimises F(x) 

•Given a value x, the function F is expanded up to the second order: 
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Sufficient condition for optimality 

First order necessary condition is to have: 
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•Find the vector x=[x1,…,xn]
T such that: 
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where G is the Jacobian matrix of nonlinear functions c 

Newton’s method in N dimensions 
B

A
S

IC
S

 O
F N

O
N

L
IN

E
A

R
 P

R
O

G
R

A
M

M
IN

G
 



•Find x=[x1,…,xn]
T that minimises F(x): 
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Where H is the Hessiana matrix of F 

First order necessary conditions for optimality 

Newton’s method for minimisation in N dimensions  
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•Build an estimate B* of matrix B:  
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In this case the convergence is no more quadratic but superlinear 

Update the Hessian matrix with the BFGS (Broyden-Fletcher-

Goldfarb-Shanno) formula: 

Approximation of the Hessian and Jacobian matrix 
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•find x that minimises F(x) subject to:  
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Suffcicient condition for optimality is that the Hessian of the L is: 

First order necessari conditions for optimality (Kuhn-Tuker): 

A scalar function called Lagrangian is defined as: 
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Constrained optimisation: Equality Constraints 
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Minimise: 

Subject to 

And solution 

At the solution point 

Equivalent necessary condition is that the projection of the gradient of the 

function F on the constraint is zero: 

Equivalent sufficient condition is that the projection of the Hessiana is 

positive defined: 

Constrained optimisation: Equality Constraints 
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•Find x that minimises F(x) subject to:  

0)( xc

For x=x*: 

•Some constraints are equal to zero 

 

 

•Others are strictly satisfied 

 

set active  the tobelongs i.e. for   0)( Aici x

sconstraint inactive ofset   the tobelong i.e. 'for   0)( Aici x

Necessari condition for optimality is that lagrangian multipliers at the solution 

are: 

0i

Constrained optimisation: Inequality Constraints 
B

A
S

IC
S

 O
F N

O
N

L
IN

E
A

R
 P

R
O

G
R

A
M

M
IN

G
 



•Two different approaches: 

•active set method 

•Interior point method 

Active Set 

This methods looks for the active set at every optimisation step 

Interior Point 

Inequality constraints are penalised in the objective function 

through a barrier function dependent on a penality parameter m: 

)(ln)( xx cF m

The solution is forced to stay within the feasible region by the 

barrier function lnc(x) 

Constrained optimisation: Inequality Constraints 
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The solution of the constrained optimisation problem satisfies the following 

first order conditions: 
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Slack variables are introduced to insert inequality  

constraints as equality constraints: 
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Constrained optimisation: The K-T system 
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•The direction of steepest descent is computed solving the K-T system: 
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•The solution of the K-T system gives the direction of steepest 

descent and the step. The step length is corrected by a factor a: 
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•The value a is such that the bounds on slacks s and 

unknowns x are not violated 

Constrained optimisation: The K-T system 
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Given the quadratic objective function 

Subject to linear constraints 

bAx 

Solution method: starting from a first guess x0 and an estimate of the 

active set A0 

1)at step k solve the K-T system with the constraints in Ak as equalities 

2)Maximum step length along the direction p which does not violate active 

constraints 

3) if the step crosses on inactive constraints the step is reduced and the 

constraint is inserted among active constraints, then go to step 1 otherwise 

check the sign of the associated lagrangian multipliers 

4) If all the multiplier are positive then stop, otherwise if erase from the active 

set the  constraint associated to the most negative multipliers. 
 

Sequential Quadratic Programming 

B
A

S
IC

S
 O

F N
O

N
L

IN
E

A
R

 P
R

O
G

R
A

M
M

IN
G

 



x2 
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Feasible region 
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Step x1 x2 Active  set 

0 4 0 A
0
=c2 

1 2.77 1.85 2=-5.53 erase c2 

2 1.2 0.8 a=0.5  add c1 

 

3 1 1 A
*
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Minimise 

Subject to 

Example 
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NOTICE! 

Speed of convergence and robustness improve if Jacobian ed Hessin 

are analytical 

Robustness of convergence: local convergence must be 

acchieved from every starting point in the solution space: 

)()(
2

1
)(),,( scscscsx  TTFM 

Unidimensional minimisation in the direction of steepest descent 

using a quadratic or cubic model modello of the merit function: 

)(),,(   min a MM sx
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Betts 2000 

where  is a weight matrix 

The merit function   
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Direct Finite Element Transcription (DFET) 
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BepiColombo 
 
•3000 variables and 
constraints for the NLP 
problem  
•4 to 7 swingbys  
•resonant orbits 
•more than 20 switching 
points 
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Direct Finite Element Transcription (DFET) 
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Earth-Europa Transfer 

 

• 6000-7000 variables 
and constraints for 
the NLP problem 

• 14 swingbys 

• resonant orbits 

• variable thrust 

• Variable reference 
frames  
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Direct Finite Element Transcription (DFET) 
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WSB Transfers 

 

• 1000-1500 variables and 
constraints 

• Highly nonlinear and 
unstable dynamics 

• Impulsive manoeuvres 
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 Non-singular Equinoctial elements: 

 No singularities for zero-inclination 

and zero-eccentricity orbits. 

 
 

 

1

2

1

2

sin

cos

tan sin
2

tan cos
2

a

P e

P e

i
Q

i
Q

L





 

 
 

   
 
    
 
 

   
 
 

  
 

     

X

 Gauss planetary equations in Equinoctial elements, under a perturbing acceleration ε in 

the r-t-h frame:  
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Low Thrust Two-Points Boundary Value Problem 

 Objective:  

 

 Where the control vector u is: 

 Satisfying Gauss’ Planetary Equations and the boundary constraints: 

 

 

 

 and with:  

 Assumptions: 

 Perturbing acceleration ε is very small compared to the local gravitational 
acceleration: 

 

 Constant modulus and direction in the radial-tangential reference frame. 
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From Time to True Longitude 

 A system of differential equations in time is translated into a system of 
differential equations in true longitude:  

 

 It is possible to rewrite Gauss Planetary Equations with respect to 
Longitude by applying the chain rule: 

 

 

 Where          , with the hypothesis of small, constant, perturbing 
acceleration: 

 

 

 Thus obtaining also the time equation: 
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First order expansion of Equations of Motion (1) 

 

 
 

 

 

 

 

 

 0 1X X X

' ' ' 0 1X X X

 The aim is that of obtaining a first-order expansion of the variation of 

Equinoctial elements in the form with respect to a reference orbit: 

 

 With the manipulations described above, one obtains a set of 

equations in the form: 

 

 Which could be integrated between L0 and L. 
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Excursus on Perturbation Theory 

 

 
 

 

 

 

 

 

 Consider the following example: 
 

 

 

 And the first order expanded solution: 

 

 

If this expanded solution is substituted in the original equation one gets: 
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Excursus on Perturbation Theory 

 

 
 

 

 

 

 

 

 Now assuming we are interested only in first order terms we can 

collect terms with similar order of : 
 

 

 

The first equation is a simple harmonic oscillator and once its solution is 

substituted in the second equation one has a simple harmonic oscillator 

with periodic forcing term. 

 

 

 

Fin
ite P

ER
TU

R
B

ATIV
E ELEM

EN
TS 

0 0

2

1 1 0

x x

x x x

 

  



9/2/2012 

First order expansion of Equations of Motion (2) 

 A first order expansion could be obtained by simply integrating the ODEs with respect 

to L, which could be done in closed form.  

 This requires finding the primitives of the integrals in the form: 
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Analytical Solution of the Equations of Motion 

 Thus the first order approximate solution of perturbed Keplerian motion takes the 

form: 
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 A complete set of analytic equations parameterised on the Longitude is thus available 

to propagate the perturbed orbital motion, in the form: 
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Some remarks on accuracy 

 The accuracy of the approximation is dependent on: 

 The ratio between the local gravitational acceleration and the perturbation. Thus: 

 Error increases according to the thrust level  works better with small 

thrust magnitude (<1 N). 

 Error increases with the distance from the central body  works better very 

close to the attractor. 

 The amplitude of the trajectory arc. Error increases superlinearly with the 

amplitude of the propagation interval.  

 

 Tests have revealed that in most practical applications thrust and local gravitational 

force still present a favourable ratio. 

 The error in amplitude is mitigated by dividing a single arc into sub-arcs of smaller 

amplitude.  
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FPET method 

 A Direct Transcription Method based on Finite Perturbed Elements in 
Time (FPET) has been designed using the Perturbative approach. 

 Each transfer trajectory is divided into n subarcs: 
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 Amplitude  of arc is ∆L. 
 Perturbed motion propagated 

using analytical solution. 
 Constant thrust vector in the r-

t-h reference frame. 
 Reference node for propagation 

is the midpoint of the arc. 
 Motion is  propagated 

analytically backwards and 
forwards by         from the 
midpoint to obtain boundary 
nodes. (better accuracy 
compared to a single sided 
propagation) 

Xm 
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FPET method 

2

L


 The subarcs are then matched to each 
other at the boundaries to obtain the 
complete trajectory. 
 

 Conceptually similar to Sims & 
Flanagan Direct Transcription Method 
which used Keplerian arcs with ∆V 
discontinuities at the boundaries. 
 

 In the FPET method, thrust is 
continuous, albeit constant within each 
element. 

 In both cases, orbit propagation is analytical. 

Fin
ite P

ER
TU

R
B

ATIV
E ELEM

EN
TS 



9/2/2012 

Accuracy and CPU time (1) 

 To assess accuracy and CPU cost, orbital motion under constant thrust was 
propagated within a given time interval. 
 

 A range of values  for  the number sub-arcs was considered. 
 

 Accuracy was calculated in terms of relative error on final state with respect to 
numerical integration of the exact equations of motion. 
 

 CASE 1, Heliocentric orbital motion:  0.5 N continuous thrust on a 2000 kg 
spacecraft.  ε=2.5 10-5 m/s2 

 Departure from Earth. 
 1.5 years. 
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The LT Boundary problem with FPET 

 CASE 2, Geocentric orbital motion:  0.5 N continuous thrust on a 2000 kg 
spacecraft. ε=2.5 10-5 m/s2 

 Departure from LEO 
 5 days (≈50 revolutions). 

 FPET method is 2 orders of magnitude faster than numerical integration. 
 Even with few elements per revolution, accuracy is high for geocentric orbits. 
 In heliocentric orbits, accuracy is still adequate. 
 The FPET method is particularly advantageous with a relatively low number of 

sub-arcs. 
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The Low Thrust Two-Points Boundary Value Problem with FPET 

 The FPET transcription method is used to solve the LT boundary 
problem: 

 

 

 

 

 

 

 

 

 Decision variables for each of the n FPET: 

 Position  of the reference point (5 scalars). 

 Acceleration magnitude, azimuth and elevation (3 scalars). 

 8n decision variables and 5(n+1)+1 scalar constraints. 

 The problem is efficiently solve with a gradient-based local optimizer 
(fmincon active-set). 
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Earth-Mars Direct transfer (1) 

 Boundary problem:  

 Departure from Earth at 5600 MJD2000. 

 Rendezvous with Mars after a transfer time of 3 years. 

 2 complete revolutions. 

 Maximum acceleration: 2.5 10-5 m/s2. 

 40 FPET. 

 Initial guess for the local optimizer: constant thrust profile. 
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Earth-Mars Direct transfer (2) 

 Results: 

 Total ∆V: 5.63 km/s. 

 Relative error 10-3. 

 Solution found with 
DITAN: 5.71 km/s. 

 Hohmann Transfer: 5.49 
km/s. 
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Earth-Mars Direct transfer: Multi-Objective Problem (1) 

 Bi-objective optimization problem: ∆V and Time of Flight are 
minimised. 

 

 

 

 

 

 

 Each time to objective function is called, a boundary problem needs 
to be solved. 

 Solved with EPIC, a hybrid-memethic stochastic optimizer. 

 8000 function evaluations. 

Lower Upper 

T0 [MJD2000] 5000 5779.94 

ToF [days] 100 1500 

nrev 1 3 
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Earth-Mars Direct transfer: Multi-Objective Problem (2) 

 Bi-objective optimization problem: ∆V and Time of Flight are 
minimised. 

 An interesting comparison could 
be made with an analogous 
Biimpulsive Transfer to Mars. 
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